

Innovating Energy Technology

# Fuji Compact Power Regenerative Converter FRENIC-eRHR series

# Regenerative

Fuji Compact power regenerative converter series

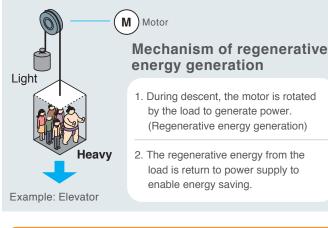


## The ability to use regenerative energy from the motor for other equipment contributes to energy saving!

**Fuji Compact Power Regenerative Converter** 

RENIC-eRHR






In a vertical transport system, conveyor, or equipment that is driven by an inverter, it is essential that regenerative energy produced by braking be processed. As a method to process this regenerative energy, it is common to use thermal

conversion through the combination of a braking resistor and a braking unit, which has the following problems, however.

- · Energy is wasted because it is consumed as heat.
- · The size of the braking resistor becomes large depending on the load conditions, if continuous regenerative braking is required or if the instantaneous regenerative capacity is large.

To solve the above problems, we added this power regenerative converter series to the Fuji drive product lineup.



#### When a power regenerative converter is used When a braking resistor is used Power supply Power Energy is returned to the supply power supply for energy saving! **Power** Braking unit supply Current Braking resistor adjusting suppressing reactor\* eactor Inverter Inverter Consumed FRENIC-eRHR Regenerative Regenerative energy energy generation Μ Continuous regenerative Μ generation operation is supported Motor Continuous rating: 80% Motor Maximum rating: 150%-1 min.

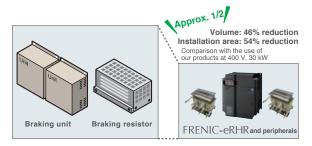
\* If the following conditions are satisfied, power supply adjusting reactor is unnecessary. (Power supply capacity required for the applicable inverter with the same capacity as the regenerative converter to be used (with DCR) × 10) > Power supply capacity)

Application examples








Flevator

Overhead traveling crane



## Low cost and space saving

- For peripherals, the FRENIC-eRHR requires only a current suppressing reactor and a power supply adjusting reactor. The simple configuration not only reduces the introduction cost, but also enables energy saving through the power regeneration capability.
- The FRENIC-eRHR saves the control panel space.
- · It enables the downsizing of the control panel compared with the combination of a braking resistor and a braking unit.



- The FRENIC-eRHR no longer requires a braking resistor, which enables a compact control panel design due to significantly reduced heat generation. This also improves the freedom of the installation space because there is no need to worry about the clearance with the resistor.
- The FRENIC-eRHR contributes to energy saving.
  - It returns the regenerative energy to the power supply, which contributes to energy saving compared with the combination of a braking resistor and a braking unit.

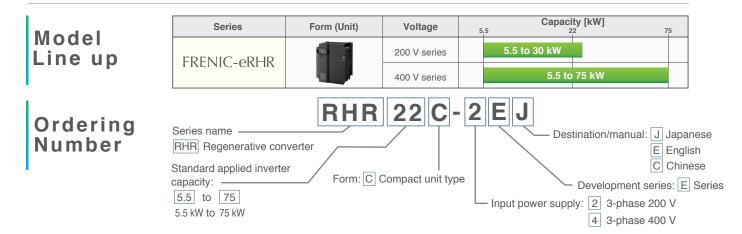
#### **Comparison of incurred loss** 100% \* Average total capacit Braking resistor FRENIC-eRHR and peripherals

## Easy to use and ease of maintenance

- The FRENIC-eRHR inherits the concept of our high-performance standard inverter FRENIC-Ace and, in addition to a similar appearance design, provides a variety of standard functions and a rich set of protective and maintenance functions.
- The FRENIC-eRHR supports RS-485 communications as standard. It also has a touch panel that you can operate in the same way as that of the FRENIC-Ace.

## Long life

For various components with a limited life, we offer 10 years of design life, which is the same as that of the Fuji inverter.


| Capacitor in main circu  | 10 years                              |                                          |
|--------------------------|---------------------------------------|------------------------------------------|
| Electrolytic capacitor o | 10 years                              |                                          |
| Cooling fan              |                                       | 10 years                                 |
| Conditions to extend     | Ambient temperature                   | +40 °C                                   |
| service life             | Load factor                           | 80 %                                     |
|                          | Electrolytic capacitor of Cooling fan | Conditions to extend Ambient temperature |

Note 1: This design life data represents calculated values, not guaranteed values

## Compliance with **Global Standards**

This product is expected to comply with the EC Directive (CE Marking).

| C | E |
|---|---|
|   |   |





Multi-story parking garage

Industrial-use mixer





Conveyor

## Standard Specifications & Common Specifications

#### 200V Series

|                               | ltem                                                                |                       |                                                                                          | Sta | andard specification | ons  |     |     |  |
|-------------------------------|---------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------|-----|----------------------|------|-----|-----|--|
|                               | Model RHR□C-2EJ                                                     | 5.5                   | 7.5                                                                                      | 11  | 15                   | 18.5 | 22  | 30  |  |
|                               | Applied inverter capacity (kW)                                      | 5.5                   | 7.5                                                                                      | 11  | 15                   | 18.5 | 22  | 30  |  |
|                               | Regenerative rated capacity (kW)                                    | 5                     | 7                                                                                        | 10  | 14                   | 17   | 20  | 28  |  |
| Output                        | Continuous rating                                                   |                       | 80% of regenerative rated capacity<br>100% of regenerative rated capacity for 1min 25%ED |     |                      |      |     |     |  |
|                               | Overload rating                                                     |                       | 150% of regenerative rated capacity for 1min                                             |     |                      |      |     |     |  |
|                               | Rated DC side current (DC)(A)                                       | 20                    | 27                                                                                       | 41  | 55                   | 68   | 81  | 112 |  |
| Phases, voltage and frequency |                                                                     |                       | 3-phase AC200~240V, 50/60Hz                                                              |     |                      |      |     |     |  |
| Input                         | Allowable voltage and<br>frequency fluctuation<br>trequency: +5~-5% |                       |                                                                                          |     |                      |      |     |     |  |
|                               | Rated power supply side current (AC)(A)                             | 16                    | 22                                                                                       | 32  | 45                   | 55   | 64  | 90  |  |
|                               | Power factor                                                        | ≥ 90% (at rated load) |                                                                                          |     |                      |      |     |     |  |
| Mass [kg]                     |                                                                     | 3.4                   | 3.4                                                                                      | 3.4 | 3.4                  | 4.3  | 4.3 | 8   |  |

#### 400V Series

|                                                                                                               | Item                                    |                                              |     |     |     | Standa | ard specific | cations |     |      |      |      |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|-----|-----|-----|--------|--------------|---------|-----|------|------|------|
|                                                                                                               | Model RHR□C-4EJ                         | 5.5                                          | 7.5 | 11  | 15  | 18.5   | 22           | 30      | 37  | 45   | 55   | 75   |
|                                                                                                               | Applied inverter capacity (kW)          | 5.5                                          | 7.5 | 11  | 15  | 18.5   | 22           | 30      | 37  | 45   | 55   | 75   |
|                                                                                                               | Regenerative rated capacity (kW)        | 5                                            | 7   | 10  | 14  | 17     | 20           | 28      | 35  | 43   | 53   | 73   |
| Output         80% of regenerative rated capacity           100% of regenerative rated capacity for 1min 25%E |                                         |                                              |     | -   |     |        |              |         |     |      |      |      |
|                                                                                                               | Overload rating                         | 150% of regenerative rated capacity for 1min |     |     |     |        |              |         |     |      |      |      |
|                                                                                                               | Rated DC side current (DC)(A)           | 11                                           | 15  | 22  | 30  | 36     | 43           | 58      | 73  | 89   | 109  | 149  |
|                                                                                                               | Phases, voltage and frequency           | 3-phase AC380~480V, 50/60Hz                  |     |     |     |        |              |         |     |      |      |      |
| Allowable voltage and<br>frequency fluctuation<br>Frequency: +5~-5%                                           |                                         |                                              |     |     |     |        |              |         |     |      |      |      |
|                                                                                                               | Rated power supply side current (AC)(A) | 8                                            | 11  | 16  | 23  | 27     | 32           | 45      | 56  | 69   | 85   | 117  |
|                                                                                                               | Power factor                            | ≥90% (at rated load)                         |     |     |     |        |              |         |     |      |      |      |
| Mass [kg]                                                                                                     |                                         | 3.2                                          | 3.2 | 3.2 | 3.3 | 4.3    | 4.3          | 8.4     | 8.4 | 26.3 | 26.3 | 26.3 |

## Common Specifications

|              | Item                | Specifications                                                                                                                                                                                                 |
|--------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Control method      | Gate on every 120 degree                                                                                                                                                                                       |
| Control      | Digital input       | run, stop, autorun, alarm reset, various digital input and power supply for PLC signal.                                                                                                                        |
| Control      | Digital output      | Transistor output (Y1, Y2, Y3), relay output (Y5A/Y5C) and total alarm output (30A/30B/30C)                                                                                                                    |
|              | Analog output       | FM1, FM2                                                                                                                                                                                                       |
|              | Protection          | AC overcurrent, AC/DC low voltage, AC/DC overvoltage, input phase lose, frequency error, cooling fin overheat, external alarm, internal overheat, overload, memory error, keypad communication err, CPU error, |
|              | Ambient temperature | -10~50°C                                                                                                                                                                                                       |
|              | Ambient humidity    | 5~95% (without condensation)                                                                                                                                                                                   |
|              | Altitude            | below 1000M                                                                                                                                                                                                    |
| Surroundings | Air pressure        | 86~106 kPa                                                                                                                                                                                                     |
|              | Vibration           | 3mm (max amplitude) 2~9Hz<br>9.8m/s <sup>2</sup> 9~20Hz<br>2m/s <sup>2</sup> 20~55Hz<br>1m/s <sup>2</sup> 55~200Hz                                                                                             |
| I            | Peripheral Devices  | Power supply adjusting reactor, Current suppressing reactor                                                                                                                                                    |

#### Protection and forecast function

[] indicates alarm codes.

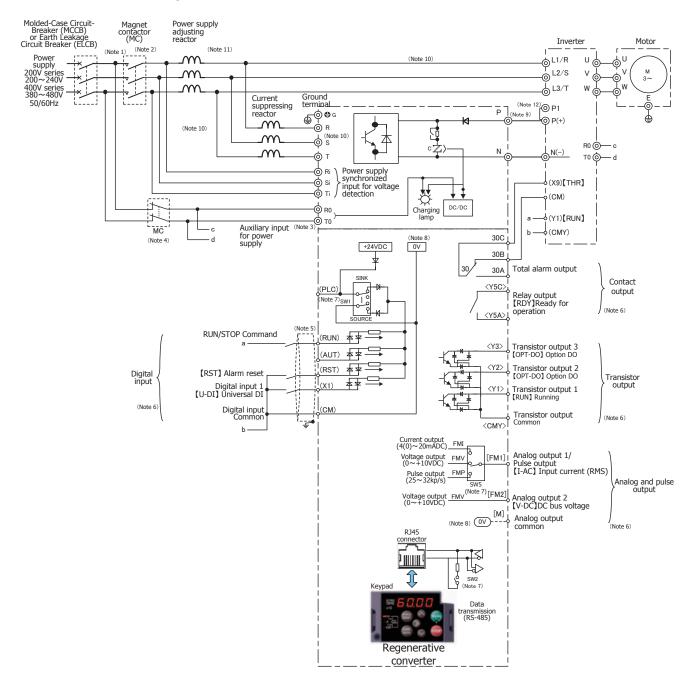
| Names of alarms                | Display               | Triggering conditions                                                                                                                                                                                                                                                                                                    |  |  |
|--------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| AC overcurrent                 | 80C<br>[4]            | This alarm is triggered when AC current instantaneously exceeds the<br>overcurrent level. For example when short or ground fault happens.                                                                                                                                                                                |  |  |
| AC low voltage                 | ЯL Ц<br>[3]           | This alarm is triggered when AC power supply voltage falls below the low<br>voltage level. This function works only when converter is running and can be<br>set as invalid by setting [F02: Restart after momentary power failure] as 1.                                                                                 |  |  |
| AC overvoltage                 | RDU<br>[2]            | This alarm is triggered when AC power supply voltage exceeds the AC<br>overvoltage level.                                                                                                                                                                                                                                |  |  |
| DC overvoltage                 | 400<br>[9]            | This alarm is triggered when regenerative current of the inverter increases<br>(to cause the regenerative energy to exceed the braking capacity) to cause<br>the link voltage of the main circuit to exceed the DC overvoltage detection<br>level.                                                                       |  |  |
| DC lowvoltage                  | <u>а</u> Ц<br>[10]    | This alarm is triggered when the DC link voltage of the main circuit is reduced below the low voltage detection level due to a voltage drop of the power supply during converter operation.<br>However, the alarm is invalid if the setting of F02 "Restart After Momentary Power Failure (operation selection)" is "0." |  |  |
| Input phase loss               | L <i>PU</i><br>[6]    | This alarm is triggered when there is a phase lack in the three-phase power supply connected to main power supply inputs L1/R, L2/S and L3/T, or there is imbalance in the source voltage of three phases, to cause the converter to be stopped upon an alarm. To reset the converter, turn off then on the power.       |  |  |
| Frequency error                | F ~ E<br>[7]          | This alarm is triggered when power supply frequency exceeds the range<br>allowed. However, this alarm is not issued if the setting of F02 "Restart<br>Mode After Momentary Power Failure (Select)" is "1."                                                                                                               |  |  |
| Cooling fin overheat           | []H  <br>[12]         | This alarm is triggered when the temperature around the cooling fin of<br>semiconductor elements of the main circuit rises due to a stopped cooling<br>fan or the like.                                                                                                                                                  |  |  |
| External alarm                 | [] <i>112</i><br>[13] | This alarm is triggered when external alarm (THR) signal is input.                                                                                                                                                                                                                                                       |  |  |
| Converter internal<br>overheat | 0H3<br>[14]           | This alarm is triggered when the temperature around the control board rises due to<br>poor ventilation inside the converter or the like.                                                                                                                                                                                 |  |  |
| Converter overload             | []L []<br>[15]        | This alarm is triggered when the AC source current exceeds the overload level of the converter (150% / 60s).                                                                                                                                                                                                             |  |  |
| Memory error                   | Er  <br>[16]          | This alarm is triggered when data writing error or other errors in the memory.                                                                                                                                                                                                                                           |  |  |
| Keypad<br>communication error  | <i>Ε-2</i><br>[17]    | This alarm is triggered when keypad communication error occurs.                                                                                                                                                                                                                                                          |  |  |
| CPU error                      | Er 3<br>[18]          | This alarm is triggered when CPU error occurs.                                                                                                                                                                                                                                                                           |  |  |

The alarm code can be checked by using alarm indication signals [AL1, 2, 4] of transistor output and the relationship between alarms and indication signals is shown as below.

| Code | Abbreviation | Name                           | AL4 | AL2 | AL1 |
|------|--------------|--------------------------------|-----|-----|-----|
| 0    |              | No alarm                       | OFF | OFF | OFF |
| 2    | AOU          | AC overvoltage                 | OFF | ON  | OFF |
| 3    | ALU          | AC low voltage                 | OFF | ON  | OFF |
| 4    | AOC          | AC overcurrent                 | OFF | OFF | ON  |
| 6    | LPU          | Input phase loss               | ON  | OFF | OFF |
| 7    | FrE          | Frequency error                | ON  | OFF | OFF |
| 9    | dOU          | DC overvoltage                 | OFF | ON  | OFF |
| 10   | dLU          | DC low voltage                 | OFF | ON  | OFF |
| 12   | OH1          | Fin overheat                   | ON  | ON  | OFF |
| 13   | OH2          | External alarm                 | ON  | OFF | OFF |
| 14   | ОНЗ          | Converter internal<br>overheat | ON  | ON  | OFF |
| 15   | OLU          | Overload                       | ON  | ON  | OFF |
| 16   | Er1          | Memory error                   | ON  | OFF | ON  |
| 17   | Er2          | Keypad<br>communication error  | ON  | OFF | ON  |
| 18   | Er3          | CPU error                      | ON  | OFF | ON  |

## Description of Terminal Function

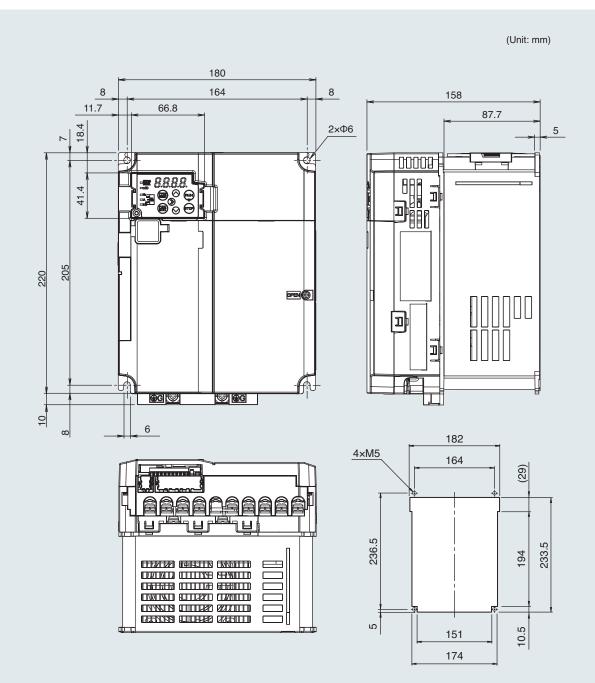
#### Description of Terminal Function


|                  | Te            | erminal                                              | Oracification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|---------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area             | Symbol        | Function                                             | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | R, S, T       | Main power supply                                    | Connect to 3-phase power supply via an exclusive reactor or the like.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Main             | P, N          | DC voltage output                                    | Connect to the power input terminals P (+) and N (-) of the inverter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| circuit          | R0, T0        | Auxiliary control power input                        | Backup for control power supply. (30kW or above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Circuit          | G             | Grounding terminal                                   | Terminal for grounding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | Ri, Si, Ti    | Synchronous power supply input for voltage detection | Voltage detection terminal used for the control inside converter; connect to power supply adjusting reactor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | RUN           | RUN / STOP command                                   | Run command is input when RUN-CM is ON, and stops when RUN-CM is OFF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | AUT           | Autorun command                                      | Runs automatically during regenerative status.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Control<br>input | RST           | Alarm reset command                                  | After removing the cause of the alarm upon alarm stop, connect across RST and CM to cancel protection and<br>restart operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ternminal        | X1            | Digital input<br>(Sink / Source)                     | The following functions can be selected<br>0: External alarm [THR], 4: Universal DI[U-DI]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | PLC           | PLC signal power supply                              | Connect the power supply of the PLC output signals. Rated voltage 24 (22 to 27) VDC, maximum output current: 100mA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | CM            | Digital input common                                 | Common terminal for digital input signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 30A           | Total alarm output (signal                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | 30B           | output from contact terminal                         | Signal is output upon alarm stop after the protective function of the converter is activated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | 30C           | (1C) without voltage)                                | (Contact capacity: AC250V 0.3A cos = 0.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Control          | Y1, Y2,<br>Y3 | Transistor output                                    | The following functions can be selected<br>0: Running [RUN], 1: Ready for operation [RDY], 3: Life forcast [LIFE], 4: Cooling fin overheat forecast [PRE-OH],<br>7: Regenerating [REG], 9: Restart after momentary power failure [U-RES], 10: Source frequency synchronization<br>[SY-HZ], 11: Alarm information [AL1], 12: Alarm information [AL2], 13: Alarm information [AL4], 25: Universal DO [U-<br>DO], 27: Cooling fan in operation [FAN], 32: Alarm output (for any alarm) [ALM], 33: Turn ON Y-terminal test output<br>[Y-ON], 34: Turn OFF Y-terminal test output [Y-OFF] |
| output           | CMY           | Transistor output common                             | Common terminal for transistor output signals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ternminal        | Y5A<br>Y5C    | Relay output                                         | Signal can be selected similarly to Y1 to Y3 terminals.<br>(Contact capacity: AC250V 5A coso=0.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | FM1,<br>FM2   | Analog output                                        | The following monitor signals can be output in analog DC voltage 0~10V or in DC current 4~20mA, or in pulse<br>25~32000p/s (FM2 can output DC voltage only).<br>0: Input current [PWR] 200%/10V<br>1: input current RMS [I-AC] 200%/10V<br>2: Input voltage RMS [V-AC] 250 (500)V/10V<br>3: DC us voltage [V-DC] 500 (1000)V/10V<br>4: Power supply frequency [FREQ] 100Hz/10V<br>5: +10V output for test [P10] -                                                                                                                                                                    |
|                  | M             | Analog output common                                 | Common terminal for analog output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | RJ-45         | RJ-45 port used for                                  | Used to connect the keypad. The power to the keypad will be supplied from the compact power regenerative                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Commuication     | connector     | connecting a keypad                                  | converter through this connector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | Connector     | RS-485 communications port                           | Can be used to connect a computer, programmable controller, etc by RS-485 communication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## Functional specifications

## Description of Function Codes

| Code       | Name                                                         | Data range                                                                                                                                                                                                                                                                                                                    | Min<br>increment | Unit | Default<br>Value |
|------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|------------------|
| F00        | Data protection                                              | 0: No data protection<br>1: Data protection activated                                                                                                                                                                                                                                                                         | 1                | -    | 0                |
| F01        | Operation setting                                            | 0: Operation through keypad<br>1: Operation through external signals                                                                                                                                                                                                                                                          | 1                | -    | 1                |
| F02        | Restart mode after<br>Momentary power<br>failure (Selection) | 0: Invalid (Stop operating after low voltage being detected)<br>1: Valid (Restart after momentary power failure)                                                                                                                                                                                                              | 1                | -    | 1                |
| F04        | LED monitor<br>(display selection)                           | 0~5<br>0: Input power 1 [%]<br>1: Input power 2 [kW]<br>2: Input current RMS [A]<br>3: Input voltage RMS [V]<br>4: DC bus voltage [V]<br>5: Power supply frequency [Hz]                                                                                                                                                       | 1                | -    | 0                |
| F10        | Operation mode selection                                     | 0: Manual mode (Keep running when run command is input)<br>1: Autorun mode (After run command is input, run only when DC bus voltage<br>increase is detected.)                                                                                                                                                                | 1                | -    | 0                |
| F11        | Duration time for autorun mode                               | Opration duration time during autorun mode can be set here.<br>0.0~60.00                                                                                                                                                                                                                                                      | 1                | S    | 4                |
| F12        | Stop power level for autorun mode                            | It is used to set power level to end autorun. During auto-running, auto-run will be ended once regenerative power falls below this level. 0.0~100.0                                                                                                                                                                           | 0.1              | %    | 50.0             |
| F13        | Start voltage level for autorun mode                         | It is used to set the start voltage level for autorun.                                                                                                                                                                                                                                                                        | 1                | V    | 5                |
| F17        | Stop voltage level for autorun mode                          | 0~100<br>It is used to set the stop voltage level for autorun.<br>0~100                                                                                                                                                                                                                                                       | 1                | V    | 2                |
| E01        | X1 terminal<br>(Function selection)                          | 0~4<br>0: External alarm [THR]<br>4: Universal DI [U-DI]                                                                                                                                                                                                                                                                      | 1                | -    | 4                |
| E02        | Y1 terminal transistor output<br>(function selection)        | 0~34<br>0: Running [RUN]<br>1: Ready for operation [RDY]<br>3: Life forecast [LIFE]<br>4: Cooling fin overheat forecast [PRE-OH]<br>7: Regenerating [REG]                                                                                                                                                                     |                  |      | 0                |
| E03        | Y2 terminal transistor output<br>(function selection)        | 9: Restart after momentary power failure [U-RES]                                                                                                                                                                                                                                                                              |                  |      | 25               |
| E04        | Y3 terminal transistor output<br>(function selection)        | 10: Source frequency synchronization [SY-HZ]<br>11: Alarm information 1 [AL1]                                                                                                                                                                                                                                                 | 1                | -    | 25               |
| E05        | Y5 terminal relay<br>output<br>(function selection)          | <ul> <li>12: Alarm information 2 [AL2]</li> <li>13: Alarm information 4 [AL4]</li> <li>25: Universal DO [U-DO]</li> <li>27: Cooling fan in operation [FAN]</li> <li>32: Alarm output (for any alarm) [ALM]</li> <li>33: Turn ON Y-terminal test output [Y-ON]</li> <li>34: Turn OFF Y-terminal test output [Y-OFF]</li> </ul> |                  |      | 1                |
| E14        | I/O function normally<br>open/close                          | 0000~007F<br>0: Normal open<br>1: Normal close                                                                                                                                                                                                                                                                                | 1                | -    | 0                |
| E16        | ON-OFF control for<br>cooling fan                            | 0: Deactivated (Fan is always ON)<br>1: Activated (ON/OFF control)                                                                                                                                                                                                                                                            | 1                | -    | 0                |
| E18        | FM1 function slsection                                       | 0~10<br>0: Input power [PWR] +200%/+10V<br>1: Input current RMS [I-AC] +200%/+10V<br>2: Input voltage RMS [V-AC] 250 (500)V/10V<br>3: DC bus voltage [V-DC] 500 (1000)V/10V<br>4: Frequency [FREQ] 100Hz/10V                                                                                                                  | 1                | -    | 0                |
| E19        | FM2 function selection                                       | 5: +10V output for testing [P10]                                                                                                                                                                                                                                                                                              | 1                | -    | 3                |
| E20        | FM1 function selection                                       | 0: Voltage output (DC0~+10V)<br>1: Current output (DC4~20mA)<br>2: Current output (DC0~20mA)<br>3: Pulse output                                                                                                                                                                                                               | 1                | -    | 0                |
| E21        | FM1 gain                                                     | 0~100.00 (times)                                                                                                                                                                                                                                                                                                              | 0.01             | time | 1                |
| E22        | FM2 gain                                                     | . ,                                                                                                                                                                                                                                                                                                                           |                  |      | 1                |
| E23        | FM1 (pulse rate)                                             | 25~32000p/s (pulse when monitor data is 100%)                                                                                                                                                                                                                                                                                 | -                | p/s  | 1440             |
| E24<br>E25 | FM1 bias<br>FM2 bias                                         | - 100.0~100.0%                                                                                                                                                                                                                                                                                                                | 0.1              | %    | 0                |
| E25<br>E27 | FM1-2 filter                                                 | 0.000~0.500s                                                                                                                                                                                                                                                                                                                  | 0.001            | s    | 0.01             |
| H00        | Data initialization                                          | It is used to make all function codes return to initial status.                                                                                                                                                                                                                                                               | 1                | -    | 0.01             |
| H14        | Clear alarm data                                             | 0: Disable<br>1: Alarm data clear (Automatically return to 0 after clearing data)                                                                                                                                                                                                                                             | 1                | -    | 0                |
|            |                                                              |                                                                                                                                                                                                                                                                                                                               |                  |      | 1                |

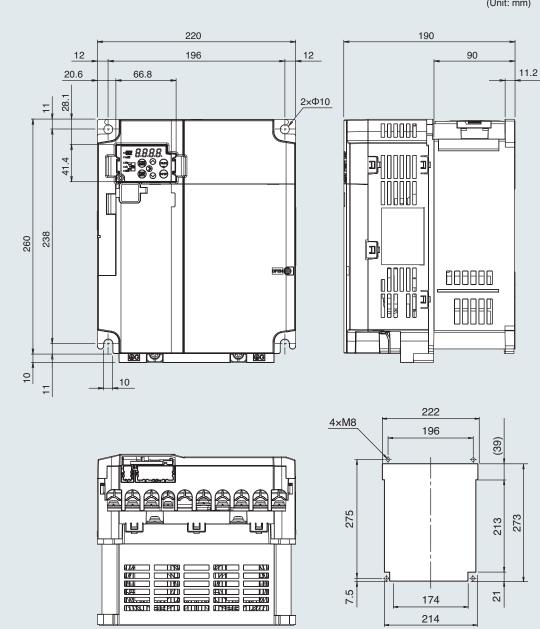

#### **Basic Connection Diagram**



- (Note 1) Please install MCCB or ELCB into the input side of inverter/converter system for protection. In addition make sure that the rated current of breaker installed is no larger than rated current recommended.
- (Note 2) Sometimes it is necessary to power off inverter or converter from power supply without opening MCCB or ELCB, therefore it is recommended to install magnet contactor (MC) for inverter/converter. In addition, please install the surge absorber parallelly when coils like MC and solenoid is installed near inverter/converter.
- (Note 3) Please connect these terminals to power supply if there is a need to keep outputting the total alarm signal or to keep keypad displaying even after the main power supply has been cut off from converter. In addition, converter can operate normally without these terminals connected (for capacity larger than 30kW only).
- (Note 4) Make sure the connection pass through an insulating transformer or b contact of MC therefore it can be cut off from main circuit. In addition, insulating tansformer is necessary when using a non-grounding system as power supply.
- (Note 5) Please use the twisted pair cable or shielded cable for control signal cable. Basically shielded cable should be connected to earth, but in case that system is interfered by severe induction noise it can be connected to [CM] to suppress the noise somehow. In addition, cable for control signals should be as far as possible from the main circuit cables and should not be inserted into the same duct (the distance should be no less than 10cm as recommended). In case that control signal cable has to meet with main circuit cable, please try to make them at right angle.
- (Note 6) The descriptions about functions for terminal [X1](digital input), [Y1]~[Y3](transistor output), and [FM1]~[FM2](monitor output) are for initial status.
- (Note 7) These are various kinds of switches on control PCB and can be used to change the performance of functions.
- (Note 8) OV and OV are separated and insulated from each other.
- (Note 9) The length of DC bus cables between inverter and regenerative converter (terminal P, P(+) and N, N(-)) should be no more than 5m.
- (Note 10) The length of cable between power supply adjusting reactor and inverter/converter should be no more than 10m.
- (Note 11) If the following conditions are satisfied, power supply adjusting reactor is unnecessary.
- (Power supply capacity required for the applicable inverter with the same capacity as the regenerative converter to be used (with DCR) × 10) > Power supply capacity) (Note 12) Do not remove the shorting bar from terminals P1-P(+) if the direct current reactor is not used.

## **External Demensions**

#### Figure A



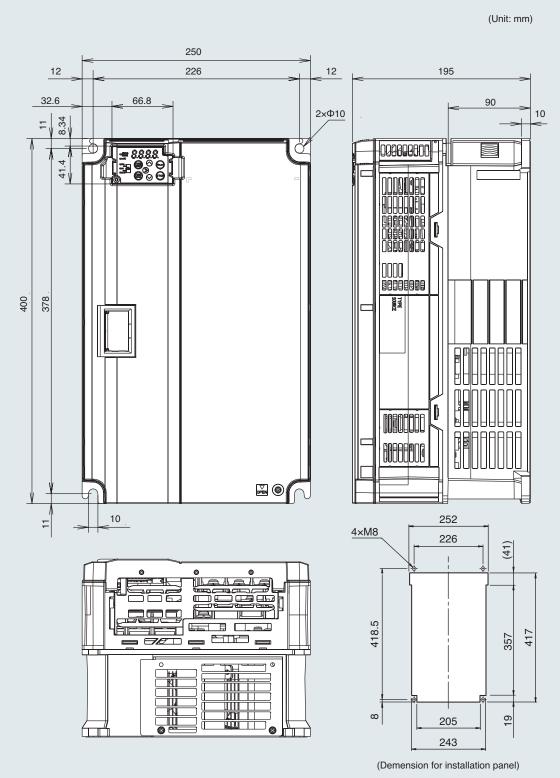

(Demension for installation panel)

| Power supply voltage | Converter type |
|----------------------|----------------|
|                      | RHR5.5C-2EJ    |
| Three-phase          | RHR7.5C-2EJ    |
| 200V                 | RHR11C-2EJ     |
|                      | RHR15C-2EJ     |
|                      | RHR5.5C-4EJ    |
| Three-phase          | RHR7.5C-4EJ    |
| 400V                 | RHR11C-4EJ     |
|                      | RHR15C-4EJ     |

Compact regenerative converter series FRENIC-eRHR

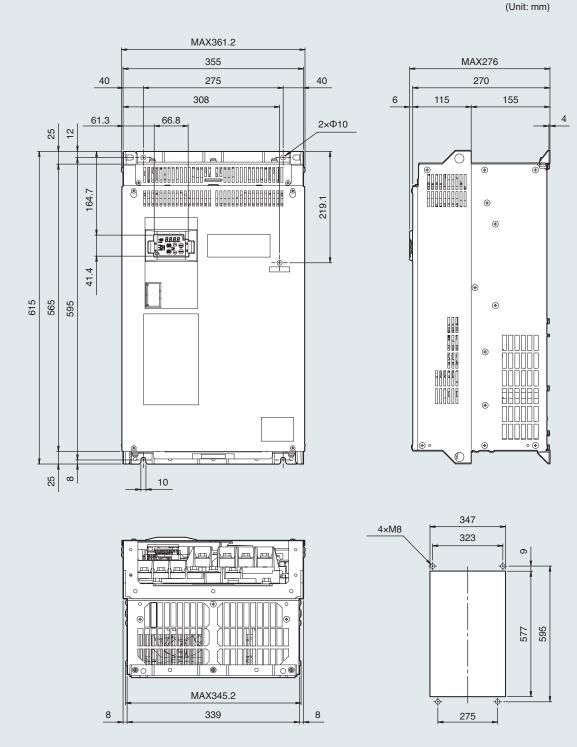
#### Figure B




(Unit: mm)

(Demension for installation panel)

| Power supply voltage | Converter type |
|----------------------|----------------|
| Three-phase          | RHR18.5C-2EJ   |
| 200V                 | RHR22C-2EJ     |
| Three-phase          | RHR18.5C-4EJ   |
| 400V                 | RHR22C-4EJ     |


## **External Demensions**

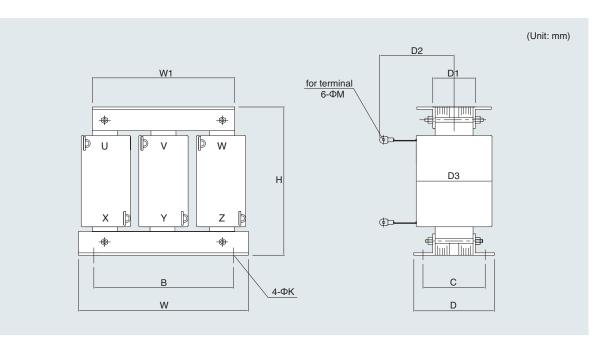
#### Figure C



| Power supply voltage | Converter type |
|----------------------|----------------|
| Three-phase<br>200V  | RHR30C-2EJ     |
| Three-phase          | RHR30C-4EJ     |
| 400V                 | RHR37C-4EJ     |

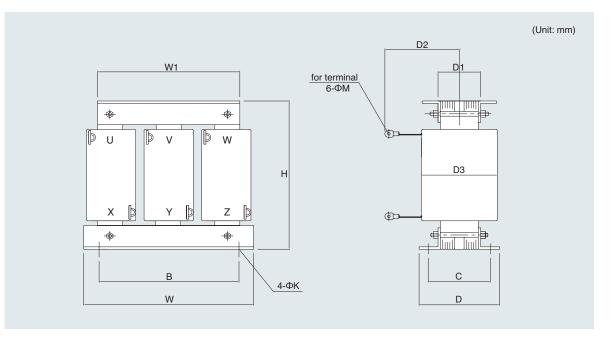
Figure D




(Demension for installation panel)

| Converter type |
|----------------|
| RHR45C-4EJ     |
| RHR55C-4EJ     |
| RHR75C-4EJ     |
|                |

## Peripheral devices


## Current suppressing reactor

| Power<br>supply<br>voltage | Converter<br>model | Current<br>suppressing<br>Reactor model | Demension [mm] |     |     |    |     |       |       |     |     |      |                                |                |
|----------------------------|--------------------|-----------------------------------------|----------------|-----|-----|----|-----|-------|-------|-----|-----|------|--------------------------------|----------------|
|                            |                    |                                         | н              | W   | В   | С  | D   | W1    | D1    | D2  | D3  | - к  | Solderless<br>Terminal<br>size | – Mass<br>[kg] |
|                            |                    |                                         | MAX            | ±1  | ±1  | ±2 | ±2  | ±1    | +2,-1 | ±5  | MAX |      |                                |                |
| 200V                       | RHR5.5C-2EJ        | ACR2-5.5CS                              | 110            | 155 | 104 | 66 | 92  | 113.8 | 23    | 70  | 45  | 7×10 | M5                             | 3              |
|                            | RHR7.5C-2EJ        | ACR2-7.5CS                              | 110            | 155 | 104 | 66 | 92  | 113.8 | 24    | 72  | 49  | 7×10 | M5                             | 3              |
|                            | RHR11C-2EJ         | ACR2-11CS                               | 120            | 155 | 104 | 80 | 106 | 130   | 36    | 80  | 55  | 7×10 | M5                             | 5              |
|                            | RHR15C-2EJ         | ACR2-15CS                               | 125            | 155 | 104 | 79 | 105 | 130   | 35    | 82  | 57  | 7×10 | M6                             | 5              |
|                            | RHR18.5C-2EJ       | ACR2-18.5CS                             | 125            | 155 | 104 | 86 | 112 | 130   | 43    | 88  | 65  | 7×10 | M6                             | 6              |
|                            | RHR22C-2EJ         | ACR2-22CS                               | 130            | 155 | 104 | 79 | 105 | 130   | 35    | 85  | 56  | 7×10 | M6                             | 5              |
|                            | RHR30C-2EJ         | ACR2-30CS                               | 130            | 155 | 104 | 87 | 113 | 130   | 43    | 90  | 67  | 7×10 | M8                             | 6              |
| 400V                       | RHR5.5C-4EJ        | ACR4-5.5CS                              | 110            | 155 | 104 | 66 | 92  | 113.8 | 24    | 65  | 46  | 7×10 | M4                             | 3              |
|                            | RHR7.5C-4EJ        | ACR4-7.5CS                              | 110            | 155 | 104 | 78 | 104 | 113.8 | 36    | 72  | 58  | 7×10 | M4                             | 4              |
|                            | RHR11C-4EJ         | ACR4-11CS                               | 125            | 155 | 104 | 80 | 106 | 130   | 35    | 76  | 57  | 7×10 | M5                             | 5              |
|                            | RHR15C-4EJ         | ACR4-15CS                               | 125            | 155 | 104 | 80 | 106 | 130   | 35    | 81  | 62  | 7×10 | M5                             | 5              |
|                            | RHR18.5C-4EJ       | ACR4-18.5CS                             | 125            | 155 | 104 | 80 | 106 | 130   | 35    | 82  | 63  | 7×10 | M5                             | 6              |
|                            | RHR22C-4EJ         | ACR4-22CS                               | 125            | 155 | 104 | 87 | 113 | 130   | 43    | 82  | 72  | 7×10 | M6                             | 6              |
|                            | RHR30C-4EJ         | ACR4-30CS                               | 152            | 180 | 128 | 76 | 102 | 160   | 40    | 93  | 74  | 7×10 | M6                             | 9              |
|                            | RHR37C-4EJ         | ACR4-37CS                               | 150            | 180 | 128 | 92 | 118 | 160   | 56    | 96  | 83  | 7×10 | M6                             | 11             |
|                            | RHR45C-4EJ         | ACR4-45CS                               | 152            | 180 | 128 | 92 | 118 | 160   | 56    | 100 | 90  | 7×10 | M8                             | 12             |
|                            | RHR55C-4EJ         | ACR4-55CS                               | 186            | 215 | 155 | 86 | 112 | 194   | 50    | 107 | 94  | 7×10 | M8                             | 16             |
|                            | RHR75C-4EJ         | ACR4-75CS                               | 186            | 215 | 155 | 99 | 125 | 194   | 63    | 112 | 95  | 7×10 | M8                             | 19             |



#### Power supply adjusting reactor

| Power<br>supply<br>voltage | Converter<br>model | Power supply<br>adjusting reactor<br>model | Demension [mm] |     |     |     |     |       |       |     |     |      |                                |                |
|----------------------------|--------------------|--------------------------------------------|----------------|-----|-----|-----|-----|-------|-------|-----|-----|------|--------------------------------|----------------|
|                            |                    |                                            | н              | W   | В   | С   | D   | W1    | D1    | D2  | D3  | к    | Solderless<br>Terminal<br>size | - Mass<br>[kg] |
|                            |                    |                                            | MAX            | ± 1 | ± 1 | ± 2 | ± 2 | ± 1   | +2,-1 | ± 5 | MAX |      |                                |                |
| 200V                       | RHR5.5C-2EJ        | ACR2-5.5PC                                 | 105            | 155 | 104 | 66  | 92  | 113.8 | 23    | 74  | 42  | 7×10 | M6                             | 3              |
|                            | RHR7.5C-2EJ        | ACR2-7.5PC                                 | 105            | 155 | 104 | 66  | 92  | 113.8 | 23    | 78  | 46  | 7×10 | M6                             | 3              |
|                            | RHR11C-2EJ         | ACR2-11PC                                  | 105            | 155 | 104 | 84  | 110 | 113.8 | 41    | 89  | 55  | 7×10 | M8                             | 5              |
|                            | RHR15C-2EJ         | ACR2-15PC                                  | 125            | 155 | 104 | 79  | 105 | 130   | 35    | 88  | 60  | 7×10 | M8                             | 5              |
|                            | RHR18.5C-2EJ       | ACR2-18.5PC                                | 121            | 155 | 104 | 80  | 106 | 130   | 35    | 92  | 63  | 7×10 | M8                             | 5              |
|                            | RHR22C-2EJ         | ACR2-22PC                                  | 125            | 155 | 104 | 79  | 105 | 130   | 35    | 96  | 65  | 7×10 | M8                             | 6              |
|                            | RHR30C-2EJ         | ACR2-30PC                                  | 125            | 155 | 104 | 88  | 114 | 130   | 44    | 103 | 77  | 7×10 | M8                             | 7              |
| 400V                       | RHR5.5C-4EJ        | ACR4-5.5PC                                 | 105            | 155 | 104 | 74  | 100 | 113.8 | 32    | 75  | 52  | 7×10 | M5                             | 4              |
|                            | RHR7.5C-4EJ        | ACR4-7.5PC                                 | 105            | 155 | 104 | 86  | 111 | 113.8 | 44    | 80  | 64  | 7×10 | M5                             | 5              |
|                            | RHR11C-4EJ         | ACR4-11PC                                  | 105            | 155 | 104 | 85  | 112 | 113.8 | 43    | 79  | 65  | 7×10 | M6                             | 5              |
|                            | RHR15C-4EJ         | ACR4-15PC                                  | 125            | 155 | 104 | 80  | 106 | 130   | 35    | 86  | 59  | 7×10 | M6                             | 5              |
|                            | RHR18.5C-4EJ       | ACR4-18.5PC                                | 121            | 155 | 104 | 79  | 105 | 130   | 35    | 86  | 60  | 7×10 | M6                             | 5              |
|                            | RHR22C-4EJ         | ACR4-22PC                                  | 125            | 155 | 104 | 79  | 105 | 130   | 35    | 87  | 64  | 7×10 | M6                             | 6              |
|                            | RHR30C-4EJ         | ACR4-30PC                                  | 125            | 155 | 104 | 88  | 114 | 130   | 44    | 95  | 78  | 7×10 | M8                             | 7              |
|                            | RHR37C-4EJ         | ACR4-37PC                                  | 125            | 155 | 104 | 89  | 115 | 130   | 45    | 102 | 78  | 7×10 | M8                             | 7              |
|                            | RHR45C-4EJ         | ACR4-45PC                                  | 125            | 155 | 104 | 89  | 115 | 130   | 45    | 103 | 81  | 7×10 | M8                             | 7              |
|                            | RHR55C-4EJ         | ACR4-55PC                                  | 125            | 155 | 104 | 94  | 120 | 130   | 50    | 106 | 83  | 7×10 | M8                             | 8              |
|                            | RHR75C-4EJ         | ACR4-75PC                                  | 183            | 215 | 155 | 76  | 102 | 194   | 41    | 103 | 74  | 7×10 | M10                            | 13             |



Memo -

Memo

Compact regenerative converter series FRENIC-eRHR

15

#### When running general-purpose motors

 Driving a 400V general-purpose motor When driving a 400V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation.

 Torque characteristics and temperature rise When the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally powered ventilating fan.

#### Vibration

When the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine. Operation of a 2-pole motor at 60Hz or more may cause abnormal vibration.

- \* Study use of tier coupling or dampening rubber.
- \* It is also recommended to use the inverter jump frequencies control to avoid resonance points.

#### Noise

When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60Hz or more can also result in more noise.

#### When running special motors

#### Explosion-proof motors

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

#### Brake motors

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.

Do not use inverters for driving motors equipped with series-connected brakes.

#### Geared motors

If the power transmission mechanism uses an oillubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

#### Single-phase motors

Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase motors



#### **Environmental conditions**

#### Installation location

Use the inverter in a location with an ambient temperature range of -10 to 50°C. The inverter and braking resistor surfaces become

hot under certain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

#### Combination with peripheral devices

#### Installing a molded case circuit breaker (MCCB)

Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.

#### Installing a magnetic contactor (MC) in the output (secondary) circuit

If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose. ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC

#### Installing a magnetic contactor (MC) in the input (primary) circuit

Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals

#### · Protecting the motor

The electronic thermal facility of the inverter can protect the general-purpose motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.

If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).

#### Discontinuance of power-factor correcting capacitor Do not mount power factor correcting capacitors in the inverter (primary) circuit. Use a DC reactor to improve the inverter power factor. Do not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.

#### Discontinuance of surge killer

Do not mount surge killers in the inverter output (secondary) circuit.

#### Reducing noise

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met

#### Measures against surge currents

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.

We recommend connecting a DC REACTOR to the inverter.

#### Megger test

When checking the insulation resistance of the inverter, use a 500V megger and follow the instructions contained in the Instruction Manual.

#### Wiring

#### Wiring distance of control circuit

When performing remote operation, use twisted shielded wire and limit the distance between the inverter and the control box to 20m.

 Wiring length between inverter and motor If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (highfrequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 50m. If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL).

When wiring is longer than 50m, and sensorless vector control or vector control with speed sensor is selected, execute off-line tuning.

#### Wiring size

Select cables with a sufficient capacity by referring to the current value or recommended wire size.

Do not use multicore cables that are normally used

## Wiring type for connecting several inverters and motors.

Grounding

Securely ground the inverter using the grounding terminal

#### Selecting inverter capacity

#### · Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard

#### Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current.

#### Transportation and storage

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

## F Fuji Electric Co., Ltd.

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan Phone: +81-3-5435-7190 Fax: +81-3-5435-7447 URL: http://www.fujielectric.com/