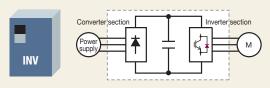


High Performance Vector Control Inverter

FRENIC-VG Series

The Dawn of a New Era


The FRENIC-VG is creating a new era via the industry-leading performance.

With the FRENIC-VG, Fuji has concentrated its technologies to deliver the best-performing inverter on the market. In addition to basic performance, this model features the following dramatic improvements: support for previously difficult applications due to technical and capability limitations, easier, more user-friendly maintenance, and environmental friendliness and safety. Fuji Electric proudly introduces the FRENIC-VG to the world.

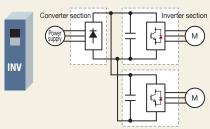
Product introduction

Inverter (Unit Type)

This type consists of the converter and inverter circuits. The inverter can be operated using a commercial power supply.

* DC power can also be supplied without using the converter circuit.

Structure


- Built-in converter (rectifier)
- Built-in control circuit
- External DC reactor as standard*
- DC input is available.
- * Available for 75kW or higher capacity models

Features

Easier arrangement for small-scale

Inverter (Stack Type)

The converter and inverter sections are separately set in this type. The converter (diode stack) or PWM converter is required depending on the intended use. Moreover, a combination of inverters can be used with one converter.

Structure

- The converter (rectifier) is separately set.
- External control circuit
- Built-in DC reactor

Features

- DC supply enables the multi-drive arrangement
- Energy can be shared within DC bus lines.
- Downsized panel
- Large-capacity system is easily built.
- Easier maintenance

Converter

Diode rectifier (Stack Type) **RHD-D** series

This converter is used where no electric power regeneration is required.

PMW converter (Unit Type) RHC-C series*

PMW converter (Stack Type)

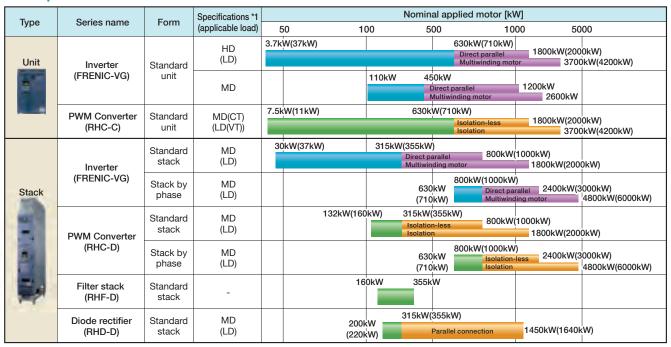
Filter stack (Stack Type) RHC-D series*(400V/690V) RHF-D series (400V/690V)

This converter is used where electric power regeneration or harmonic control is required. Peripheral devices are separately required.

* D series and C series differ in form but show identical function and performance. Please use them according to the installation space and purposes.

Comprehensive Line-up

Series lineup (inverters, converters)


- Line-up features unit type and stack type, facilitating easy construction of large-capacity systems.
- The stack type offers support for up to the following capacities through direct parallel connection.

Three-phase 400V series: Max. 2400kW (MD spec.), 3000kW (LD spec.)

Three-phase 690V series: Max. 1200kW (MD spec.), 1200kW (LD spec.)

Converter Inverter Expand capacity range Expand capacity range Products Line-UP Three-phase 200V series Products Line-UP (parallel operation) Nominal applied motor [kW] Specifications *1 Series name Type Form (applicable load) 50 100 500 5000 0.75kW 90kW(110kW) Unit Inverter Standard HD 250kW(300kW) (FRENIC-VG) unit (LD) 500kW(630kW) 7.5kW(11kW) 90kW(110kW) PWM Converter Standard MD(CT) 250kW(300kW) (RHC-C) unit (LD(VT)) 500kW(630kW)

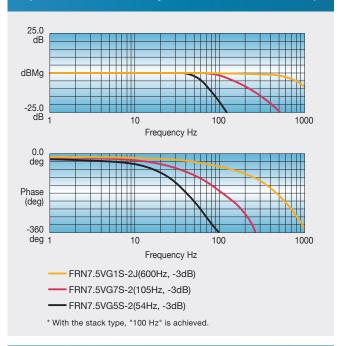
Three-phase 400V series

Three-phase 690V series

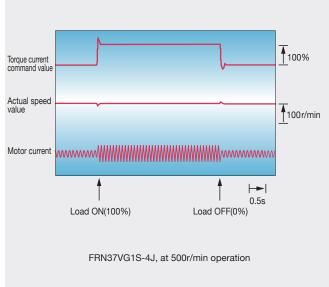
Time	Series name	Form	Specifications *1			Nomin	al applied motor [kl	/ /]	
Type	Series name	FOIII	(applicable load)	5	50 10	00 5	00 10	00 50	00
Stack	Inverter (FRENIC-VG)	Standard stack	MD (LD)		90kW (110kW)		50kW(450kW) Direct parallel Multiwinding motor	1200kW(1200k) 2700kW(
11.00	PWM Converter (RHC-D)	Standard stack	MD (LD)		132kW (160kW)		solation-less	1200kW(1200k 2700kW(,
	Filter stack (RHF-D)	Standard stack	-		16	0kW 45	okW		
	Diode rectifier (RHD-D)	Standard stack	MD (LD)			kW)	Parallel connection	2000kW	

- *1 Refer to "Ratings for intended use" on page 6 for specifications (applicable load).
- Unit type inverters have built-in brake circuits as standard (160kW or less).
- Configuration: Standard unit → Can be used with one set. Stack by phase → Categorized by phase, and one inverter set consists of three stacks. Multiple inverters can be connected with a single PWM converter and diode rectifier.
- Inverters can also be supplied with DC power (with generator, etc.) without the use of a converter circuit.
- Capacity expansion (parallel operation)
- Inverters
 - · Direct parallel connection: One single-winding motor is driven by multiple inverters. (Drive is possible with up to three inverters)
- Multi-winding motor drive: Specialized motor drive system with multiple windings around a single motor. (Drive is possible with up to six inverters)
- Transformer isolation (parallel system): System used to isolate the receiving power supply system and converter with a transformer. It is necessary to equip each converter input with a transformer. (No. of parallel connection units: max. 6)
- Transformerless (parallel system): System in which a PWM converter is connected directly to the receiving power supply system. There is no need to isolate with a transformer. (No. of parallel connection units: max. 3)
- Filter circuits if used with transformerless parallel system (multiple units operating in parallel)
- Standard stack: Use a filter stack. (Filter circuits cannot be configured with peripheral equipment.)

Stack by phase: Use peripheral equipment.

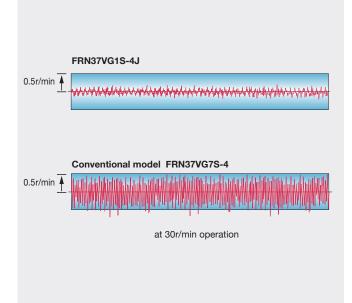


Realizes the industry-leading control performance

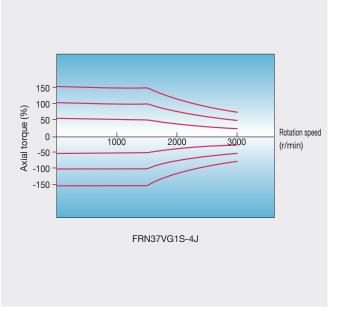

Induction motor

Achieved speed response of 600 Hz

(Tested with a dedicated motor with PG under vector control with speed sensor: about six times greater than our conventional model)



Follow-up characteristics under impact load


Uneven rotation reduced by one-third

* Compared with our conventional models

Speed and torque characteristics

Under vector control with sensor

A Wide Range of Applications

Ratings for intended use

The operation mode for the motor is selected according to motor load condition. Motors larger by one or two frames can be driven with medium load (MD) and light load (LD) use.

Specification	Applied load	Feature	Applicable overload rating	Power supply	Applicable motor capacity [kW]		
opeomoation	Applied load	reature	Applicable overload rating	voltage	Unit Type	Stack Type ^{*2}	
	High Duby			200V	0.75 to 90	-	
HD	High Duty Spec	Powerful drive at low noise	Current: 150% 1min/200% 3sec	400V	3.7 to 630	-	
	opeo			200V 0.75 to 90 - 400V 3.7 to 630 - 690V 200V - 400V 110 to 450 *2 30 to 800 690V - 90 to 450 200V 37 to 110 -	-		
				200V	-	-	
MD	Middle Duty Spec	Can drive motors of frames one size larger ⁻¹	150% 1min	400V	110 to 450 *2	30 to 800	
	Орос		22 220 14.1901			690V	0.75 to 90
		*		200V	37 to 110	-	
LD	Low Duty Spec		Unit type:120% 1min Stack type:110% 1min	400V	37 to 710	37 to 1000	
	Opco		Stack type. 110% IIIIII	690V	-	110 to 450	

^{*1} This varies depending on motor specifications and power supply voltage.

A standard built-in brake circuit with expanded capacity range

Having a standard built-in brake circuit (with 200V 55kW or less and 400V 160KW or less), is useful when applying the inverter to the vertical transfer machine, which is frequently used under the regenerative load.

* Unit type only

High-speed, high-accuracy position control realized (servo function)

- Built-in position control function as standard with pulse train input (A separate option (OPC-VG1-PG(PR)) is required for pulse train input.)
- High-speed, high-accuracy position control is possible in combination with an E-SX bus and 17-bit high-resolution ABS encoder.

(The servo function is supported with a dedicated type.) (Soon to be supported)

Control method

Not only the induction motors but also the synchronous motors can be driven, and for the induction motors, you can select the most suitable control method according to your individual needs.

Target motors	Control method
Induction motor	-Vector control with speed sensor -Speed sensorless vector control -V/f Control
Synchronous motor	- Vector control with speed sensor (including pole position detection)

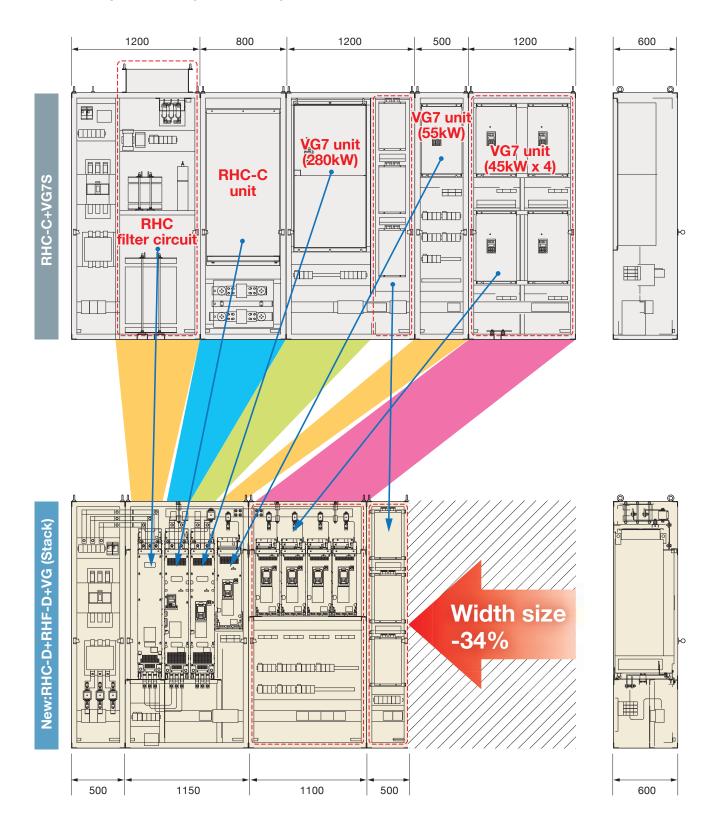
A wide range of options

- Providing options supporting various interfaces such as high-speed serial communications
- Options can be used by just inserting them into the connectors inside the inverter. Up to four cards can be mounted. (Combination with built-in control option: see page 48)

Categoly	Name		Туре
Analog card	Synchronized interface		OPC-VG1-SN
	Analog input/output interface exp	pansion card	OPC-VG1-AIO
Digital card (for 8-bit bus)	Di interface card		OPC-VG1-DI
	Dio extension card		OPC-VG1-DIO
	PG interface card	+5V line driver	OPC-VG1-PG
		Open collector	OPC-VG1-PGo
		ABS encoder with 17-bit high resolution	OPC-VG1-SPGT
	PG card for synchronous motor drive	Line driver	OPC-VG1-PMPG
		Open collector	OPC-VG1-PMPGo
	T-Link communication card	OPC-VG1-TL	
	CC-Link communication card	OPC-VG1-CCL	
	High-speed serial communication	OPC-VG1-SIU	
Digital card (for 16-bit bus)	SX bus communication card	OPC-VG1-SX	
	E-SX bus communication card	OPC-VG1-ESX	
	User programming card	OPC-VG1-UPAC	
	PROFINET-IRT communication c	OPC-VG1-PNET	
Safety card	Functional safety card		OPC-VG1-SAFE
Field bus interface card	PROFIBUS-DP communication of	ard	OPC-VG1-PDP
	DeviceNet communication card	OPC-VG1-DEV	
Control circuit terminal	Terminal block for high-speed co	mmunications	OPC-VG1-TBSI

^{*1} comming soon

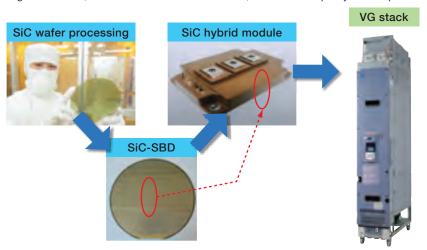
^{*2} Carrier frequency becomes 2kHz.

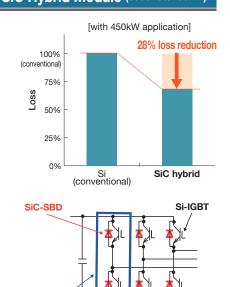

Dedicated design for panel installation (Stack Type)

Panel size reduction realized

The use of a stack type designed specifically for panel installation has resulted in a reduced panel size compared with the conventional design. A 34% reduction in panel width has been achieved over the conventional design (example for crane system).

The dedicated design has also resulted in easier installation of products into the panel and easier replacement.


<Panel configuration example for crane system>



690V Series Inverter Stack Capacity Expansion Through Adoption of SiC Hybrid Module (355 /400/450kW)

Adoption of next-generation device (SiC-SBD)

Fuji handles all processes from new development to production from the device level, and has realized an optimized SiC module design tailored to stacks. This has resulted in a 28% reduction in generated loss, facilitated a reduction in stack size, and allowed capacity to be expanded.

Compact size and capacity expansion through adoption of SiC hybrid module

Through the adoption of an SiC hybrid module, generated loss has been reduced by 28%, and stack single unit capacity has been expanded to 450kW, while ensuring the same dimensions as stacks in the 250 to 315kW capacity range. (Stack width: 226.2 mm)

Stack width 226.2 mm x 2 stacks

Stack width 226.2 mm

Dimensions and capacity comparison

SiC hybrid module

Single unit capacity	315kW	450kW		
Stack width	226.2mm			
Capacity	0.18	3m³		

Use of a "single" 450kW system configuration realized with SiC hybrid module application

Also compatible with fan, pump applications

Applicable for even large-scale systems with dedicated fan and pump functions and broad capacity range [Soon to be supported]

- Forced operation (Fire Mode)
- The inverter protection function is ignored (retry), allowing operation to be continued. This allows fans and pumps to continue running as much as possible in times of emergency such as when there is a fire.
- Command loss detection function
- If analog speed setting signals are interrupted, operation continues at the speed set with a function code.
- Low water quantity stop function
- The inverter can be stopped if the pump discharge pressure rises and discharged water quantity drops.
- Broad capacity range
- Capacity expansion is easy with parallel operation (direct parallel connection).

Form	Dawer aunah waltara	Unit typ	e: HD spe	pec./Stack type: MD spec.				
FOIII	Power supply voltage	Lineup		Capacity expansion *1	No. of parallel units *2	Lineup	Capacity expansion *1	No. of parallel units *2
Limit to on a	200V series	Up to 90kW		Up to 250kW	3	Up to 110kW	Up to 300kW	3
Unit type	400V series	Up to 630kW		Up to 1800kW	3	Up to 710kW	Up to 2000kW	3
Charletona	400V series	Up to 800kW		Up to 2400kW	3	Up to 1000kW	Up to 3000kW	3
Stack type	690V series	Up to 450kW		Up to 1200kW	3	Up to 450kW	Up to 1200kW	3

^{*1} The capacity expansion value indicates the nominal applied motor capacity.

^{*2} Capacity expansion applies to the direct parallel connection system. Up to three inverters can be connected in parallel.

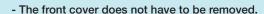
Support for ultrahigh-speed E-SX bus

A PLC (MICREX-SX Series: SPH3000MM) and FRENIC-VG can be connected with the ultrahigh-speed communication E-SX bus. With ultrahigh-speed communication, support is possible for even faster, more accurate devices.

Easier maintenance

Inverter product range and ease of replacement (stack type)

The inverters (stack type) have an arrangement with consideration for the installation of the product into the panel and easier change. The inverters (stack type) (132 to 315 kW) can easily be installed or changed because they have wheels.

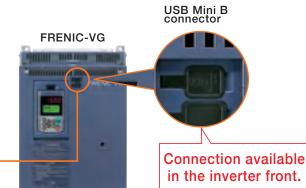

With the inverters (stack type) (630 to 800 kW), stacks are divided for each output phase (U, V and W), which has realized the lighter weight.

(5)	tack type, (coo to coo kvv), stacks	are arriada for daori datpat priado (o,	dand w), which has realized the lighter weight.
Nominal applied motor capacity [kW] (MD spec)	30 to 110	132 to 450	630 to 800
Туре	400V: FRN30SVG1S-4□to FRN110SVG1S-4□ 690V: FRN90SVG1S-69□to FRN110SVG1S-69□	400V: FRN132SVG1S-4□to FRN315SVG1S-4□ 690V: FRN132SVG1S-69□to FRN450SVG1S-69□	FRN630BVG1S-4⊡to FRN800BVG1S-4⊡
Categoly	Single unit	Single unit	Stack by phase
Wheels	Not provided	Provided	Provided
Arrangement	N UV.W	P N UVW	U-shase W-shase W-shase W-shase
Maintenance	The weight of one stack is reduced (50 kg or less) to give consideration to replacement work.	The models where each stack is heavy have wheels in order to change the stacks easily. A lifter for replacement is available.	Trim weight by dividing the stack into 3 parts by each output phase (U, V and W). In the event of a breakdown, only the target phase needs to be replaced with a new one. The stack to be replaced should be an exclusive part.
Approx.weight [kg]	30 to 45	95 to 135	135×3

Easier Maintenance and Greater Reliability

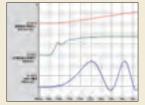
Upgraded PC loader functions

PC Loader can be used via the USB connector (mini B) provided on the front cover.



- No RS-485 converter is needed.

- Commercial cables can be used.



USB cable

[Fault diagnosis using the trace back function]

- Internal data, time and date around the fault are recorded.
 The real-time clock (clock function) is built-in as standard.
- Data are backed up by battery.
 Trace data can be stored in the memory even while the power is off.
 *Battery: 30kW or more (built-in as standard), up to 22kW (available as option: OPK-BP)
- Trace waveform can be checked on the PC loader

[Easy edit and detail monitor]

Data editing and detailed data monitor analysis operations are much easier than with a conventional PC loader.

Function code setting

User-defined displays (customized displays), data explanation display for each code.

Trace function

Real-time trace: for long-term monitoring Historical trace: for detailed data diagnosis for short periods

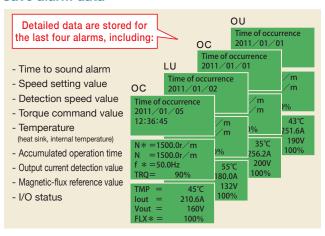
Trace back: for fault analysis (last three times)

- *The paid-for loader software (WPS-VG1-PCL) supports real-time tracing and historical tracing.
- *The paid-for loader software (WPS-VG1-STR) is contained in the CD-ROM provided with the product. (Can be downloaded from the Fuji website.)

Multifunctional the Keypad

- Wide 7-segment LED ensures easy view.
- The back-light is incorporated in the LCD panel, which enables the easy inspection in the dark control panel.
- Enhanced copy function

The function codes can be copied to other inverters easily. (Three patterns of function codes can be stored.) Copying data in advance reduces restoration time when problems occur, by replacing the Keypad when changing the inverter.


- Remote control operation is available.
 - The Keypad can be remotely operated by extending the cable length at the RJ-45 connector.
- JOG (jogging) operation can be executed using the Keypad.
- The HELP key displays operation guidance.
- Supported languages: English, Chinese, Korean (Hangul), Japanese

More reliable functions

Save alarm data

- The number of alarm data to be stored has been increased from the conventional model.

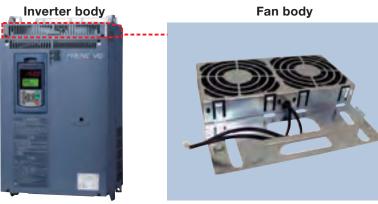
Thanks to the real-time clock function built-in as standard, the complete data of the latest and last 3 alarm occurences is stored: time, speed command, torque, current and others. This enables machine units to be checked for abnormalities.

⇒As for previous model, new alarm data overwrote and deleted existing alarm data. This is solved with the new VG model.

Alarm severity selection

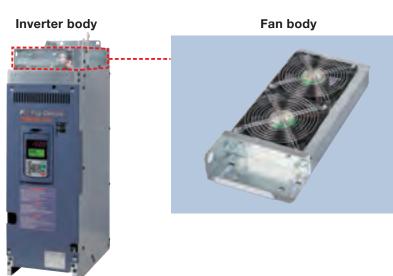
Alarm severity (serious and minor) can be selected, eliminating the risk of critical facility stoppage due to a minor fault.

	30-relay output	Y-terminal output	Inverter output	Selection
Motor overload, communications error,	No output (minor fault)	Provided	Operation continued	Can be selected
DC fan lock, etc.	Output	Not provided	Shut off	n Can be selected for each function
Blown fuse, excessive current, ground fault, etc.	Output	Not provided	Shut off	Fixed


PG fault diagnosis

- The PG interface circuit incorporated as standard detects disconnection of the power supply line as well as the PG signal line.
- A mode was added that judges if it is a PG fault or a fault on the inverter side Simulated output mode is provided at the PG pulse output terminal (FA and FB).
 Operation can be checked by connecting this to the PG input terminal.

Easy change of the cooling fan


Unit Type

The cooling fan can easily be changed without removing the front cover and printed board.

Stack Type

The cooling fan installed at the top can easily be changed without drawing the stacks. However, for the 220kW or above inverter, remove the 2 connection bars from the DC side and change the cooling fan.

Components with a longer service life

For the various consumable parts inside the inverter, their designed lives have been extended to 10 years.

This also extended the equipment maintenance cycles.

Life conditions

Unit type: ambient temperature 40 °C, load factor 100% (HD spec.), 80% (MD spec., LD spec.) Stack type: ambient temperature 30 °C, load factor 100% (MD spec.), 80% (LD spec.)

^{*}The planned life is determined by calculation, and is not the guaranteed value.

Life-limited component	Design lifetime
Cooling fan	
Smoothing capacitor on main circuit	10 years
Electrolytic capacitors on PCB	

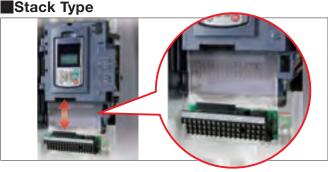
Enhanced lifetime alarm

- Lifetime alarms can be checked rapidly on the Keypad and PC loader (optional).
- Facility maintenance can be performed much easier thanks to lifetime alarms.

Items							
Inverter accumulated time (h)	No. of inverter starts (times)	Facility maintenance warning Accumulated time (h) No. of starts (times)	Inverter lifetime alarm information is displayed.				

Useful functions for test run and adjustment

- Customization of functions for test run and adjustment (Individual items on the loader can be set to be displayed or not.)
- Simulated fault alarm issued by a special function on the Keypad
- Monitor data hold function
- Simulated operation mode


Simulated connection allows the inverter to be operated with internal parts in the same way as if they were connected to the motor, without actually being connected.

- The externally input I/O monitor and PG pulse states can be checked on the Keypad.

Easy wiring (removable control terminal block)

- The terminal block can be connected to the inverter after control wiring work is completed. Wiring work is simplified.
- Restoration time for updating equipment, problem occurrence, and inverter replacement has been drastically reduced. Just mount the wired terminal block board to the replaced inverter.

Compliance with overseas standards

- Complies with UL and cUL Standards, EC Directives (CE marking), KC certification, and RoHS Directive.
- *The stack type three-phase 690V series does not comply with UL and cUL Standards.
- Directive when the standard model is combined with an option (EMC filter).

EC Directive (CE marking)

UL Standards/cUL Standards

KC certification
(Stack type: pending certification)

Enhanced environmental resistance

Environmental resistance has been enhanced compared to conventional inverters.

- (1) Environmental resistance of cooling fan has been enhanced.
- (2) Ni and Sn plating are employed on copper bars.

Environmental resistance has been enhanced on the FRENIC-VG compared to conventional models; however, the following environments should be examined based on how the equipment is being used.

- a. Sulfidizing gas (present in some activities such as tire manufacturers, paper manufacturers, sewage treatment, and the textile industry)
- b. Conductive dust and foreign particles (such as with metal processing, extruding machines, printing machines, and waste treatment)
- c. Others: under unique environments not included under standard environments

Contact Fuji before using the product in environments such as those indicated above.

Conforms to safety standards

- The functional safety (FS) function STO that conforms to the FS standard IEC/EN61800-5-2 is incorporated as standard.
- The FS functions STO, SS1, SLS and SBC that conform to FS standard IEC/EN61800-5-2 can be also available by installing the option card OPC-VG1-SAFE. (Available only when controlling the motor using feedback encoder (closed loop).)

Safety function STO: Safe Torque Off

This function shuts off the output of the inverter (motor output torque) immediately.

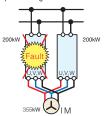
Safety function SS1: Safe Stop 1

This function decreases the motor speed to shut down the motor output torque (by STO FS function) after the motor reaches the specified speed or after the specified time has elapsed.

Safety function SLS: Safely Limited Speed

This function prevents the motor from rotating over the specified speed.

Safety function SBC: Safe Brake Control


This function outputs a safe signal of the motor brake control.

How to expand the capacity range of the inverters (Stack Type)

Direct parallel connection system and multiwinding motor drive system are provided for driving a large capacity motor.

S	System	Direct parallel connection system	Multiwinding motor drive system		
Drive motor		Single-winding motor	Multiwinding motor (Exclusive use for multiwinding motors)		
Features	Restriction of wiring length	The minimum wiring length (L) varies with the capacity.	There is no particular limit.		
Reduced capacity operation *2		Available	Available (However, the wiring should be switched over.)		
Number of inv	erters to be connected	2 to 3 inverters	2 to 6 inverters		
Arrangem	ent diagram	When 2 inverters P are connected N P,N P,N III	When 2 inverters are connected N P.N P.N P.N III		

- *1) OPC-VG1-TBSI is separately required.
- *2) Reduced capacity operation. If a stack fails in case of direct parallel connection, the operation continues with lower output power using the stacks that have not failed.

Example) If one inverter fails when 200kW x 2 inverters are driving a 355kW motor, the operation can continue with the 200kW inverter (capacity of one inverter).

(Note) To start the reduced capacity operation, consideration is needed to the switch over operation of PG signals or motor constants and sequence circuit. For details, refer to the operation manual.

Configuration table for direct parallel connection

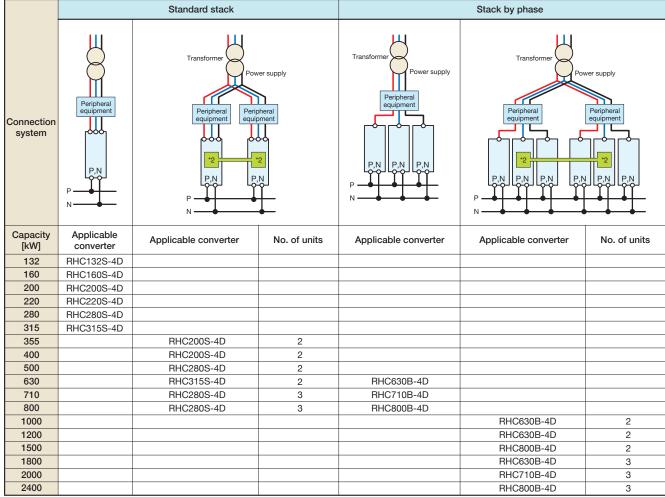
2 or even 3 inverters of the same capacity can be connected in parallel to increase capacity or facilitate system redundancy. Typical combinations are shown in Table 1, however, other configurations are also possible.

Table 1 Direct parallel combination example (400V series, MD specification)

		Standard stack				Stack by phase		
Connection system	P. N.	P N P N II M		P N P N P N P N W	P N P,N P,N P,	N P,N F	P,N	
Capacity [kW]	Applicable inverter	Applicable inverter	No. of units	Current [A]	Applicable inverter	Applicable inverter	No. of units	Current [A]
30	FRN30SVG1							
37	FRN37SVG1							
45	FRN45SVG1							
55	FRN55SVG1							
75	FRN75SVG1							
90	FRN90SVG1							
110	FRN110SVG1							
132	FRN132SVG1							
160	FRN160SVG1							
200	FRN200SVG1							
220	FRN220SVG1							
250	FRN250SVG1							
280	FRN280SVG1							
315	FRN315SVG1							
355		FRN200SVG1	2	716				
400		FRN220SVG1	2	789				
500		FRN280SVG1	2	988				
630		FRN220SVG1	3	1183	FRN630BVG1			
710		FRN280SVG1	3	1482	FRN710BVG1			
800		FRN280SVG1	3	1482	FRN800BVG1			
1000						FRN630BVG1	2	2223
1200						FRN630BVG1	2	2223
1500						FRN800BVG1	2	2812
1800						FRN630BVG1	3	3335
2000						FRN710BVG1	3	3905
2400						FRN800BVG1	3	4218

^{*1)} OPC-VG1-TBSI is required for each stack.

A "transformer-less parallel system" and "transformer insulation type parallel system" can be used to expand the total converter capacity.


	Transformer isolation-less parallel system	Transformer insulation type parallel system
System	This system involves connecting converter inputs to the power supply without isolating with a transformer, etc.	This system involves isolating respective converter inputs with a transformer.
Reduced capacity operation	Available	Available
Number of converter to be connected	2 to 3 converters	2 to 6 converters
Arrangement diagram	When 2 converters are connected Transformer Power supply Peripheral equipment Peripheral equipment Peripheral equipment	When 2 converters are connected Three-winding transformer (12 -pulse) Peripheral equipment Peripheral equipment Peripheral equipment

^{*2)} OPC-VG7-SIR is required for each stack. *3) OPC-VG7-SI is required for each stack.

■ Transformerless parallel system configuration table

2 or 3 converters of the same capacity can be connected in parallel to increase capacity or facilitate system redundancy. Typical combinations are shown in Table 2, however, other configurations are also possible.

Table 2 Transformerless parallel system combination example (400V series, MD specification)

^{*2)} OPC-VG7-SIR is required for each stack.

System Configuration Overview

■ PWM converter + inverter

Note

Single winding motor

Multi winding motor

CNV: PWM converter INV: inverter

Filter circuit (individual)

Converter unit(RHC-C) or stack(RHC-D)

Inverter unit or stack

Optical communication card (option)

No.	System structure	System construction	Filter stack (RHF)(*1)	Filter for RHC-C series (individual type)	Motor capacity (Ex. FRN315SVG1S-4 parallel use)
1	F C I TREST	Available CNV: 6 pieces/max INV: 6 parallel connection/max	⊚ Available	■Converter unit (RHC-C) ② Available ■Converter stack (RHC-D) •RHC132S to 315S-4D → X Not Available (*2) •RHC630B to 800B-4D → ③ Available	to 1800kW (6 winding motor)
2	F C I I I I I I I I I I I I I I I I I I	X Not available (Use No.3 for direct parallel connection.)	_	_	_
3	F C I TESS TESS TESS TESS TESS TESS TESS TE	Available CNV: 6 parallel connection/max INV: 3 parallel connection/max	Available	■Converter unit (RHC-C)	to 800kW (INV: 3 parallel connection)
4	F C I TESI TESI TESI	O Available CNV: 6 pieces/max INV: 6 parallel connection/max	Available	→ X Not Available (*2) •RHC630B to 800B-4D → @ Available	to 1800kW (6 winding motor)
5	F C TRBSI TR	X Not available (If sharing converter output, use the No.7 connection.)	_	_	_
6	F C TRESITED	X Not available (If sharing converter output, use the No.8 connection.)	_	_	_
7	F C I TBSI TBSI TBSI TBSI TBSI TBSI TBSI TB	Available CNV: 3 parallel connection/max INV: 6 parallel connection/max	Available		to 1800kW (6 winding motor)
8	F C I TESI TESI TESI TESI TESI TESI TESI TE	Available CNV: 3 parallel connection/max INV: 3 parallel connection/max	Available	Converter unit (RHC-C) Available Converter stack (RHC-D)	to 800kW (INV: 3 parallel connection)
9	F C TESI	Available INV: 6 parallel connection/max	Available	•RHC132S to 315S-4D → X Not Available (*2) •RHC630B to 800B-4D → ⊚ Available	to CNV capacity
10	F C TEST TEST TEST TEST TEST TEST TEST TE	Available INV: 3 parallel connection/max	⊚ Available		to CNV capacity

(*1) The filter stack (RHF-D) is for exclusive use with the PWM converter (RHC-D) stack type. It cannot be used with the PWM converter (RHC-C) unit type. (*2) Please note that restrictions apply if using an RHC Series filter (available separately) with the PWM converter (RHC-D) stack type. For details, contact Fuji. (Note 1) If using with a direct parallel connection or multi-winding motor drive, ensure that the capacity is the same for all inverters. (Note 2) When multiple inverters are powered by a single converter, ensure that the converter capacity ≥ the total inverter capacity. (Note 3) When driving a motor with direct parallel connection, a minimum wiring length between the motor and inverter should be maintained. (Note 4) The main power supply to all converters should be turned on at the same time.

■ Diode Rectifier (RHD-D) + inverter

Note

Single winding motor

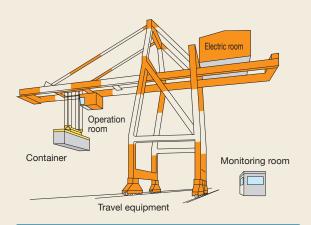
Multi winding motor

INV: inverter

_ACR AC reactor

RFI Diode rectifier

Inverter unit or stack


Optical communication card (option)

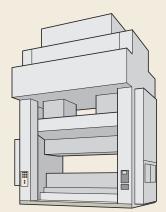
No.		System structure	Applicable system Applicable motor capacity (total) (*1)	Remarks
1	RFI:INV= 1:N	RFI TBSI or	Direct parallel system Multiwinding system Continous rating (total) MD: to 315kW LD: to 355kW	
2	RFI:INV= 2:2 RFI:INV= 3:3	RFI TBSI	Multiwinding system Continous rating (total) MD: to 945kW LD: to 1065kW	If common bus not applied for RFI output (DC output) Not applicable with direct parallel systems
3	RFI:INV= 2:N RFI:INV= 3:N	RFI TBSI Or TBSI	Direct parallel system Multiwinding system Continous rating (total) MD: to 869kW LD: to 979kW	A common bus should be applied for RFI output (DC output). Restrictions apply to wiring conditions from TR to INV. Voltage distortion in input voltage (3%, from IEC standards) Wiring restrictions apply from input power supply to DC common bus.
4	RFI:INV= 2:2	ACR RFI TEST	Multiwinding system Continous rating (total) MD: to 548kW LD: to 617kW	If common bus not applied for RFI output (DC output) Not applicable with direct parallel systems Voltage distortion in input voltage (3%, from IEC standards) Use an AC reactor.
5	RFI:INV= 2:N	ACR RFI TBSI Or ACR RFI	Direct parallel system Multiwinding system Continous rating (total) MD: to 548kW LD: to 617kW	1) Voltage distortion in input voltage (3%, from IEC standards) 2) Use an AC reactor.
6	RFI:INV= 4:N	ACR RFI I TBSI Or RFI I L	Direct parallel system Multiwinding system Continous rating (total) MD: to 970kW LD: to 1093kW	If using RFI (x4, or 6) structure configuration 1) A common bus should be applied for RFI output (DC output). 2) Restrictions apply to wiring conditions from Transformer to Inverter. 3) Voltage distortion in input voltage (3%, from IEC standards) 4) Use an AC reactor.
7	RFI:INV= 6:N	ACR RFI I I I I I I I I I I I I I I I I I	Direct parallel system Multiwinding system Continous rating (total) MD: to 1450kW LD: to 1640kW	If using RFI (x6) structure 1) A common bus should be applied for RFI output (DC output). 2) Restrictions apply to wiring conditions from Transformer to Inverter. 3) Voltage distortion in input voltage (3%, from IEC standards) 4) Use an AC reactor.

(*1) Motor capacity is calculated based on a power supply voltage of 400 V. (Note 1) Use inverters of the same capacity for direct parallel systems and multiwinding motor drive systems. (Note 2) Turn ON the main power supply for all converters at the same time.

Application Examples

Large crane and overhead crane

High reliability

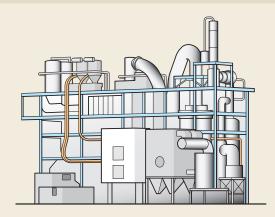

VG supports your facility with long life service and high reliability.

The trace back function allows easy fault diagnosis.

Bus system support

The bus system is supported to allow centralized control of elevation, traverse, and trolley, as well as centralized monitoring of running conditions.

Servo press: large size for automobiles, small size for machines such as crimping terminal processing machines

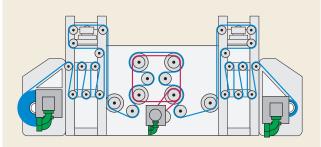

Position control

The press position is controlled based on an instantaneous position command given by the upper order CNC. Control with high responsibility contributes to shortening of the operation cycle.

Precision synchronization control

Large machines are driven with several motors to increase thrust. Precision synchronization control of several inverters and motors using the high-speed bus system can be applied.

Application to plants


Control with high speed and high accuracy

In addition to high speed and high accuracy, VG contributes to stable facility operation with high reliability and long service life. The trace back function makes diagnosing the cause of problems easy when an abnormality arises.

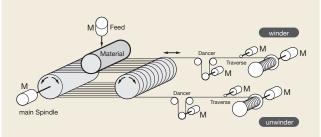
Bus system support

Centralized control and monitoring are achieved by supporting various fieldbuses.

Winding equipment (paper and metal)

Tension control

Tension-type winding control capability with high accuracy torque control has been improved.

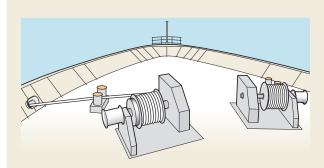

Dancer-type winding control capability by the speed

control with high speed response has been improved.

System support

The controller that calculates winding diameter achieves constant tension control.

Feeding part of semiconductor manufacturing device, wire saw

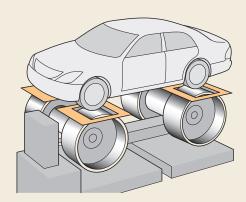

Smooth torque characteristic

The smooth drive characteristic in which torque ripple is suppressed contributes to machining quality.

System support

The system becomes more simple and highly efficient by using same bus system for main axis (spindle) and the other axes (traverse and winding) driven by small capacity servos.

Shipboard winch

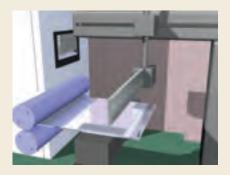


High reliability and tension control

Torque is controlled up to extra low speed using the sensorless feature.

Stable drive is maintained against load variation caused by waves.

Test equipment for automobiles


High-speed response control

High-speed rotation and torque control with high response are available for engine and transmission tests.

System support

The system can be supported in cases such as the vehicle body inertia simulation function for a brake test apparatus by combining with the controller.

Flying shear (Cutting while moving)

Position control

Position control is performed according to the position command given by the upper order CNC.

The machine cuts the material while moving at the same speed (as the material).

System support

The system is configured by an upper controller that calculates synchronous operation between the material feed axis, cutter feed axis and cut axis.

Model variation (Inverter)

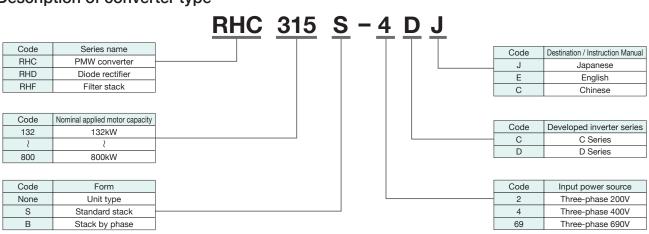
	200 V S	Series		400V Series	
	Unit 7	Гуре		Unit Type	
Nominal applied motor (kW)	HD (150%, 1 min./200%, 3 sec.)	LD (120%, 1 min.)	HD (150%, 1 min./200%, 3 sec.)	MD (150%, 1 min.)	LD (120%, 1 min.)
Applied load	High Duty Spec	Low Duty Spec	High Duty Spec	Middle Duty Spec	Low Duty Spec
0.75	FRN0.75VG1S-2□				
1.5	FRN1.5VG1S-2				
2.2	FRN2.2VG1S-2				
3.7	FRN3.7VG1S-2		FRN3.7VG1S-4		
5.5	FRN5.5VG1S-2		FRN5.5VG1S-4		
7.5	FRN7.5VG1S-2		FRN7.5VG1S-4		
11	FRN11VG1S-2□		FRN11VG1S-4		
15	FRN15VG1S-2		FRN15VG1S-4□		
18.5	FRN18.5VG1S-2□		FRN18.5VG1S-4		
22	FRN22VG1S-2□		FRN22VG1S-4□		
30	FRN30VG1S-2□		FRN30VG1S-4□		
37	FRN37VG1S-2□	FRN30VG1S-2□	FRN37VG1S-4□		FRN30VG1S-4□
45	FRN45VG1S-2	FRN37VG1S-2□	FRN45VG1S-4□		FRN37VG1S-4□
55	FRN55VG1S-2□	FRN45VG1S-2□	FRN55VG1S-4□		FRN45VG1S-4□
75	FRN75VG1S-2	FRN55VG1S-2□	FRN75VG1S-4		FRN55VG1S-4
90	FRN90VG1S-2	FRN75VG1S-2□	FRN90VG1S-4□		FRN75VG1S-4
110		FRN90VG1S-2□	FRN110VG1S-4	FRN90VG1S-4□	FRN90VG1S-4
132			FRN132VG1S-4	FRN110VG1S-4	FRN110VG1S-4
160			FRN160VG1S-4	FRN132VG1S-4□	FRN132VG1S-4□
200			FRN200VG1S-4	FRN160VG1S-4□	FRN160VG1S-4□
220			FRN220VG1S-4	FRN200VG1S-4	FRN200VG1S-4
250				FRN220VG1S-4□	
280			FRN280VG1S-4		FRN220VG1S-4□
315			FRN315VG1S-4	FRN280VG1S-4□	
355			FRN355VG1S-4	FRN315VG1S-4□	FRN280VG1S-4□
400			FRN400VG1S-4	FRN355VG1S-4□	FRN315VG1S-4□
450				FRN400VG1S-4□	FRN355VG1S-4□
500			FRN500VG1S-4		FRN400VG1S-4
630			FRN630VG1S-4		FRN500VG1S-4
710					FRN630VG1S-4□
800					
1000					

^{*} With the FRN55VG1S-2J/4J or higher (applicable motor of 75kW or higher), if driving motors of one frame or more from the inverter, the DC reactor provided as standard will differ between the HD, MD, and LD specifications. (Motor capacity becomes 1 frame larger.)

How to read the model number

FRN 30 S VG1 S-4 Code Series name Code Destination / Instruction Manual FRN FRENIC Series Japanese Е English Code Nominal applied motor capacity С Chinese 0.75 0.75kW 1.5kW Code Input power source 2.2 2.2kW 2 Three-phase 200V Three-phase 400V 4 800 800kW 69 Three-phase 690V Code Form Code Structure None Unit type S Standard S Standard stack Code Developed inverter series В Stack by phase 1 Series Code Application range High performance vector control

Caution! The product detail described in this document is intended for selecting a model. When using a product, read the Instruction Manual carefully and use the product properly.



	400V S	Series	690V Series							
	Stack	Туре	Stack	Туре						
Nominal applied motor (kW)	MD (150%, 1 min.)	LD (110%, 1 min.)	MD (150%, 1 min.)	LD (110%, 1 min.)						
Applied load	Middle Duty Spec	Low Duty Spec	Middle Duty Spec	Low Duty Spec						
0.75										
1.5										
2.2										
3.7										
5.5										
7.5										
11										
15										
18.5										
22										
30	FRN30SVG1S-4									
37	FRN37SVG1S-4	FRN30SVG1S-4								
45	FRN45SVG1S-4	FRN37SVG1S-4□								
55	FRN55SVG1S-4	FRN45SVG1S-4								
75	FRN75SVG1S-4	FRN55SVG1S-4								
90	FRN90SVG1S-4	FRN75SVG1S-4	FRN90SVG1S-69							
110	FRN110SVG1S-4	FRN90SVG1S-4□	FRN110SVG1S-69	FRN90SVG1S-69□						
132	FRN132SVG1S-4	FRN110SVG1S-4	FRN132SVG1S-69	FRN110SVG1S-69						
160	FRN160SVG1S-4	FRN132SVG1S-4□	FRN160SVG1S-69	FRN132SVG1S-69						
200	FRN200SVG1S-4	FRN160SVG1S-4	FRN200SVG1S-69	FRN160SVG1S-69						
220	FRN220SVG1S-4	FRN200SVG1S-4		FRN200SVG1S-69						
250	FRN250SVG1S-4	FRN220SVG1S-4□	FRN250SVG1S-69□							
280	FRN280SVG1S-4	FRN250SVG1S-4	FRN280SVG1S-69	FRN250SVG1S-69□						
315	FRN315SVG1S-4	FRN280SVG1S-4	FRN315SVG1S-69	FRN280SVG1S-69						
355		FRN315SVG1S-4□	FRN355SVG1S-69	FRN315SVG1S-69						
400			FRN400SVG1S-69	FRN355SVG1S-69						
450			FRN450SVG1S-69	FRN400SVG1S-69						
500										
630	FRN630BVG1S-4									
710	FRN710BVG1S-4	FRN630BVG1S-4								
800	FRN800BVG1S-4	FRN710BVG1S-4								
1000		FRN800BVG1S-4								

Model variation (converter)

	200V S	Series			400V Series		
	Unit Type	e (PWM)	Unit Typ	e (PWM)	Stack Ty	pe (PWM)	Filter stack
lominal applied motor (kW)	HD(CT) (150%, 1 min.)	LD(VT) (120%, 1 min.)	HD(CT) (150%, 1 min.)	LD(VT) (120%, 1 min.)	MD (150%, 1 min.)	LD (110%, 1 min.)	Dedicated RHC-D filter
Applied load	High Duty Spec	Low Duty Spec	High Duty Spec	Low Duty Spec	Middle Duty Spec	Low Duty Spec	-
7.5	RHC7.5-2C		RHC7.5-4C				
11	RHC11-2C	RHC7.5-2C	RHC11-4C	RHC7.5-4C			
15	RHC15-2C	RHC11-2C	RHC15-4C	RHC11-4C			
18.5	RHC18.5-2C	RHC15-2C	RHC18.5-4C	RHC15-4C			
22	RHC22-2C	RHC18.5-2C	RHC22-4C	RHC18.5-4C			
30	RHC30-2C	RHC22-2C	RHC30-4C	RHC22-4C			
37	RHC37-2C	RHC30-2C	RHC37-4C	RHC30-4C			
45	RHC45-2C	RHC37-2C	RHC45-4C	RHC37-4C			
55	RHC55-2C	RHC45-2C	RHC55-4C	RHC45-4C			
75	RHC75-2C	RHC55-2C	RHC75-4C	RHC55-4C			
90	RHC90-2C	RHC75-2C	RHC90-4C	RHC75-4C			
110		RHC90-2C	RHC110-4C	RHC90-4C			
132			RHC132-4C	RHC110-4C	RHC132S-4D□		RHF160S-4D
160			RHC160-4C	RHC132-4C	RHC160S-4D	RHC132S-4D□	RHF160S-4D
200			RHC200-4C	RHC160-4C	RHC200S-4D	RHC160S-4D□	RHF220S-4D
220			RHC220-4C	RHC200-4C	RHC220S-4D	RHC200S-4D□	RHF220S-4D
250							
280			RHC280-4C	RHC220-4C	RHC280S-4D		RHF280S-4D
315			RHC315-4C	RHC280-4C	RHC315S-4D	RHC280S-4D□	RHF355S-4D□
355			RHC355-4C	RHC315-4C		RHC315S-4D□	RHF355S-4D□
400			RHC400-4C	RHC355-4C			
450							
500			RHC500-4C	RHC400-4C			
630			RHC630-4C		RHC630B-4D		
710					RHC710B-4D	RHC630B-4D□	
800					RHC800B-4D	RHC710B-4D□	
1000						RHC800B-4D□	

Description of converter type

Caution! The product detail described in this document is intended for selecting a model. When using a product, read the Instruction Manual carefully and use the product properly.

	400V S	Series			690V Series		
	Diode r	ectifier	Stack Type (PWI	M)(Coming soon)	Filter stack (Coming soon)	Diode r	ectifier
Nominal applied motor (kW)	MD (150%, 1 min.)	LD (110%, 1 min.)	MD (150%, 1 min.)	LD (110%, 1 min.)	Dedicated RHC-D filter	MD (150%, 1 min.)	LD (110%, 1 min.)
Applied load	Middle Duty Spec	Low Duty Spec	Middle Duty Spec	Low Duty Spec	-	Middle Duty Spec	Low Duty Spec
7.5							
11							
15							
18.5							
22							
30							
37							
45							
55							
75							
90							
110							
132			RHC132S-69D□ =		RHF160S-69D		
160			RHC160S-69D	RHC132S-69D	RHF160S-69D		
200	RHD200S-4D□		RHC200S-69D□	RHC160S-69D	RHF220S-69D		
220		RHD200S-4D		RHC200S-69D	RHF220S-69D =	RHD220S-69D□	
250			RHC250S-69D		RHF280S-69D		RHD220S-69D
280			RHC280S-69D□	RHC250S-69D	RHF280S-69D		
315	RHD315S-4D□		RHC315S-69D□	RHC280S-69D□	RHF355S-69D		
355		RHD315S-4D□	RHC355S-69D□	RHC315S-69D□	RHF355S-69D□		
400			RHC400S-69D	RHC355S-69D□	RHF450S-69D□		
450			RHC450S-69D	RHC400S-69D	RHF450S-69D	RHD450S-69D□	
500							
630							
710							
800							
1000							

Standard specifications

HD specification for heavy overload (Unit Type)

Three-phase 200V series

	Type FRN⊡VG1	S-2□	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
N.						-		!		-				-				
Nor	ninal applied motor [kl	WJ	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
Rate	ed capacity [kVA] (*1)		1.9	3.0	4.1	6.8	10	14	18	24	28	34	45	55	68	81	107	131
Rate	ed current [A]		5	8	11	18	27	37	49	63	76	90	119	146	180	215	283	346
Ove	rload current rating						18	50% of	rated c	urrent -	1min. (*	2), 200	% -3s(*	3)				
	Main power Phase, Voltage, Frequ	uency	3-pha	ase 200	to 230'	V, 50Hz	/60Hz						3-ph			V/50Hz V/60Hz		
voltage	Auxiliary control pow Phase, Voltage, Frequ	117	Single	e-phase	hase 200 to 230V, 50Hz/60Hz													
siddns	Auxiliary input for fan Phase, Voltage, Frequency							_						Single	•		20V, 50H 30V/60H	
	Voltage/frequency va	riation	Volta	ge: +10	to -159	% (Volta	ige unb	alance:	2% or	less (*6)), Frequ	uency:	+5 to -5	5%				
Power	Rated current [A]	(with DCR)	3.2	6.1	8.9	15.0	21.1	28.8	42.2	57.6	71.0	84.4	114	138	167	203	282	334
	(*7)	(without DCR)	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80.1	97.0	112	151	185	225	270	_	_
	Required power supply ca	apacity [kVA] (*8)	1.2	2.2	3.1	5.2	7.4	10	15	20	25	30	40	48	58	71	98	116
Bra	king method /braking	torque	Braking	resistor disc	charge con	trol: 150% l	braking tord	que, Separa	tely installe	d braking r	esistor (opti	ion), Separa	ately install	ed braking	unit (option	for FRN75	VG1S-2	or higher)
Car	rier frequency [kHz] (*9	9)							2 to	15							2 to	10
App	rox.weight [kg]		6.2	6.2	6.2	6.2	6.2	6.2	11	11	11	12	25	32	42	43	62	105
Enc	losure					P20 clo	sed typ	e UL or	oen type	е			IP00 oper	n type UL op	en type (IP2	0 closed typ	e is available	as option)

Three-phase 400V series

Type FRN⊡VG1	S-4□	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500	630
inal applied motor [kV	V]	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500	630
d capacity [kVA] (*1)		6.8	10	14	18	24	29	34	45	57	69	85	114	134	160	192	231	287	316	396	445	495	563	731	891
d current [A]		9.0	13.5 18.5 24.5 32.0 39.0 45.0 60.0 75.0 91.0 112										150	176	210	253	304	377	415	520	585	650	740	960	1170
load current rating			150% of rated cur										rrent -1min. (*2) 200% -3s. (*3)												
Main power Phase, Voltage, Frequ	iency	3-р	hase	380	to 48	0V, 5	60Hz/	60Hz	Z				3-	phas					,						
		Sin	gle pl	nase	ase 380 to 480V, 50Hz/60Hz																				
							-						Si	ngle	phas			,							
Voltage/frequency var	riation	Volt	age:	+10	to -1	5% (Volta	ge ur	nbala	nce:	2% c	or les	s (*6)), Fre	quer	ісу: +	-5 to	-5%							
Rated current [A]	(with DCR)	7.5	10.6	14.4	21.1	28.8	35.5	42.2	57.0	68.5	83.2	102	138	164	210	238	286	357	390	500	559	628	705	881	1115
(*7)	(without DCR)	13.0	17.3	23.2	33	43.8	52.3	60.6	77.9	94.3	114	140	-	_	_	_	-	_	_	-	-	_	-	-	_
Required power supply ca	pacity [kVA] (*8)	5.2	7.4	10	15	20	25	30	40	48	58	71	96	114	140	165	199	248	271	347	388	436	489	610	773
ng method /braking to	orque	Brakir	ng resis	resistor discharge control: 150% braking torque, Separately installed braking resistor (option), Separately installed braking unit (option for FRN200VG1S-4 or his										gher)											
er frequency [kHz] (*9))					2	2 to 1	5									2	to 10	0					2 to	o 5
ox.weight [kg]		6.2	6.2	6.2	11	11	11	11	25	26	31	33	42	62	64	94	98	129	140	245	245	330	330	555	555
sure		IP2	0 clos	sed t	ype l	JL op	oen ty	/ре		IPO	00 op	en ty	pe U	L op	en ty	pe (IF	20 c	losed	d typ	e is a	vaila	ble a	s opt	ion)	
	nal applied motor [kV d capacity [kVA] (*1) d current [A] oad current rating Main power Phase, Voltage, Frequency, Voltage, Frequency Voltage, Frequency valuated current [A] *7) Required power supply can generated by the property of the property (*9) on the property of the property of the property (*9) on the property of the propert	nal applied motor [kW] Id capacity [kVA] (*1) Id current [A] Doad current rating Main power Phase, Voltage, Frequency Auxiliary control power supply Phase, Voltage, Frequency Auxiliary input for fan power Phase, Voltage, Frequency (*5) Voltage/frequency variation Rated current [A] (with DCR) Required power supply capacity [kVA] (*8) Required power supply capacity [kVA] (*8) Reguired power supply capacity [kVA] (*8)	nal applied motor [kW] 3.7 d capacity [kVA] (*1) 6.8 d current [A] 9.0 pad current rating Main power Phase, Voltage, Frequency Auxiliary control power supply Phase, Voltage, Frequency Auxiliary input for fan power Phase, Voltage, Frequency (*5) Voltage/frequency variation Rated current [A] (with DCR) Attack current [A] (with DCR) The control power supply capacity [kVA] (*8) Required power supply capacity [kVA] (*8)	nal applied motor [kW] 3.7 5.5 Id capacity [kVA] (*1) 6.8 10 Id current [A] 9.0 13.5 Id capacity [kVA] (*1) 6.8 10 Id current [A] 9.0 13.5 Id capacity [kVA] (*1) 6.8 10 Id current [A] 9.0 13.5 Id capacity [kVA] (*8) 5.2 7.4 Id capacity [kVA] (*8) 5.2 7.4 Id capacity [kVA] (*8) 5.2 17.4	nal applied motor [kW] 3.7 5.5 7.5 d capacity [kVA] (*1) 6.8 10 14 d current [A] 9.0 13.5 18.5 pad current rating Main power Phase, Voltage, Frequency Auxiliary control power supply Phase, Voltage, Frequency Auxiliary input for fan power Phase, Voltage, Frequency (*5) //oltage/frequency variation Rated current [A] (with DCR) 7.5 10.6 14.4 *7) (without DCR) 13.0 17.3 23.2 Required power supply capacity [kVA] (*8) 5.2 7.4 10 reg method /braking torque Braking resistor disc er frequency [kHz] (*9) px.weight [kg] 6.2 6.2 6.2 6.2	Auxiliary control power supply Phase, Voltage, Frequency (*5) Voltage, Frequency (*6) Voltage, Frequency (*6) Voltage, Frequency (*7) Voltage, Frequency (*8) Volt	Single phase 380 to 480V, 52 Single phase 380 to 480V, 53 Single phase 380 to 480V, 53	Single phase 380 to 480V, 50Hz/ Auxiliary control power supply Phase, Voltage, Frequency (*5) Voltage/frequency variation Voltage/frequency Vol	Single phase 380 to 480V, 50Hz/60Hz/20hase, Voltage, Frequency (*5) Voltage/frequency (*5) Voltage/frequency (*5) Voltage/frequency (*5) Voltage/frequency (*5) Voltage/frequency (*5) Voltage/frequency (*6) Voltage/frequency (*8) Voltage/frequency (*8)	Single phase 380 to 480V, 50Hz/60Hz Auxiliary input for fan power Phase, Voltage, Frequency (*5) Voltage/frequency variation Voltage: +10 to -15% (Voltage unbala atted current [A] (with DCR) 13.0 17.3 23.2 33 43.8 52.3 60.6 77.9 Required power supply capacity [kVA] (*8) 5.2 7.4 10 15 20 25 30 40 25 parking torque Tequency [kHz] (*9) 2 to 15 25 parking torque, varied the proper in t	Auxiliary control power supply Phase, Voltage, Frequency Auxiliary input for fan power Phase, Voltage, Frequency (*5) Voltage/frequency variation Rated current [A] (with DCR) 7.5 10.6 14.4 21.1 28.8 35.5 42.2 57.0 68.5 (without DCR) 13.0 17.3 23.2 33 43.8 52.3 60.6 77.9 94.3 (Required power supply capacity [kVA] (*8) 5.2 7.4 10 15 20 25 30 40 48 par frequency [kHz] (*9) 2 to 15 cox.weight [kg] 6.2 6.2 6.2 6.2 11 11 11 11 11 25 26 cox.weight [kg]	Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V, 50Hz	Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V, 50Hz	Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V, 50Hz	Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V, 50Hz/60Hz Single phase, Voltage, Frequency (*5) Voltage/frequency variation Voltage: +10 to -15% (Voltage unbalance: 2% or less (*6)), Frequency and to the property of the phase of of the	Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V, 50Hz	Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V, 50Hz	Auxiliary control power supply Phase, Voltage, Frequency Auxiliary input for fan power Phase, Voltage, Frequency Auxiliary input for fan power Phase, Voltage, Frequency (*5) Auxiliary input for fan power Phase, Voltage, Frequency (*5) (with DCR) (with DCR) (without DC	Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 440V, 380 to 480V/60Hz Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V/60Hz Single phase 380 to 480V/60H	Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V/60Hz Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V/60Hz Single phase 3	Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 440V/50Hz, 380 to 480V/60Hz (*4) Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 440V/50Hz, 380 to 480V/60Hz (*4) Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V/60Hz (*4) Single	Auxiliary control power supply Phase, Voltage, Frequency Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 440V, 50Hz (*4) Voltage/frequency variation Voltage: +10 to -15% (Voltage unbalance: 2% or less (*6)), Frequency: +5 to -5% Rated current [A] (with DCR) (3,0 17,3 23,2 33,4 34,8 52,3 60,6 77,9 94,3 114 140	Name Applied motor KW 3.7 5.5 7.5 11 15 18.5 22 30 37 45 55 75 90 110 132 160 200 220 280 315 355 4 Capacity KVA (*1) 6.8 10 14 18 24 29 34 45 57 69 85 114 134 160 192 231 287 316 396 445 495 4 4 4 4 4 4 4 4 4	Auxiliary input for fan power Phase, Voltage, Frequency (*5) Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V/60Hz (*4) Single phase 380 t	Single phase 380 to 480V, 50Hz/60Hz Single phase 380 to 480V/50Hz/60Hz Single phase 380 to 480V/60Hz Single phase 380 to 480V/50Hz/60Hz Sin

Note 1) The specification above are established when the function code F80 = 0 (HD specification) is applied.

Note 2) When using a DC reactor, refer to the following.

- Type FRN _VG1S- _U: 55kW or below: provided as option, 75kW or above: provided as standard.
- Type FRN □VG1S-□E, □C: All capacities are provided as option.
- *1) The rated output voltage is 220V for 200V series and 440V for 400V series.
- *2) When the inverter output frequency converter value is 10Hz or less, the inverter may trip early due to overload depending on the conditions such as ambient temperature.
- *3) When the inverter output frequency converter value is 5Hz or less, the inverter may trip early due to overload depending on the conditions such as ambient temperature.
- *4) 200V series: Make an individual order for 220 to 230V/50Hz.

400V series: The inverters with the power supply of 380 to 398V/50Hz and 380 to 430V/60Hz must be switched using a connector inside the inverter.

The output of the inverter with 380V may drop depending on situations. For details, refer to Chapter 10 in the FRENIC-VG User Manual "Unit Type, Function Code Edition" 24A7-—0019.

*5) The auxiliary power input is used as an AC fan power input when combining the unit such as high power factor PWM converter with power regenerative function.(Generally not used.)

*6) Voltage unbalance [%] = $\frac{\text{Max. voltage [V] - Min. voltage [V]}}{\text{Three-phase average voltage [V]}} \times 67$

Use an AC reactor if the voltage unbalance exceeds 2%

- *7) The value is calculated on assumption that the inverter is connected with a power supply capacity of 500kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50kVA) and %X is 5%.
- *8) The values shown apply when a DC reactor is used.
 - If using a generator for the power source, it may burn out with high-frequency current from the inverter. Use a generator with 3 to 4 times the specified power supply capacity. (When DC reactor not connected: approx. 4 times specified power supply capacity, when DC reactor connected: approx. 3 times specified power supply capacity)
- *9) The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself. If the carrier frequency auto reduction selection (H104: digit 100) is cancelled, the unit continuous rated current will drop depending on the carrier frequency setting, and therefore caution is advised.

(For details, refer to Chapter 2 in the FRENIC-VG User Manual "Unit Type, Function Code Edition" 24A7-□-0019.)

Three-phase 400V series

	Type FRN⊡VG1S-4□	90	110	132	160	200	220	280	315	355	400				
Nor	ninal applied motor [kW] (*8)	110	132	160	200	220	250	315	355	400	450				
Rat	ed capacity [kVA] (*1)	160	192	231	287	316	356	445	495	563	640				
Rat	ed current [A]	210	253	304	377	415	468	585	650	740	840				
Ove	erload current rating	150% of rated current -1min. (*2)													
	Main power Phase, Voltage, Frequency		380 to 440V 380 to 480V												
voltage	Auxiliary control power supply Phase, Voltage, Frequency	Single ph	Single phase 380 to 480V, 50Hz/60Hz												
supply	Auxiliary input for fan power Phase, Voltage, Frequency (*4)	Single phase 380 to 440V, 50Hz 380 to 480V/60Hz (*3)													
Power	Voltage/frequency variation	Voltage: +10 to -15% (Voltage unbalance: 2% or less (*5)), Frequency: +5 to -5%													
Po	Rated current [A] (with DCR)	210	238	286	357	390	443	559	628	705	789				
	(*6) (without DCR)						-								
	Required power supply capacity [kVA] (*7)	140	165	199	248	271	312	388	436	489	547				
Bral	king method /braking torque			control: 150% by resistor (option		Separatel	y installed b	narge contro oraking resis oraking unit	stor (option)		,				
Carı	ier frequency [kHz]					2 t	o 4								
App	rox.weight [kg]	62	64	94	98	129	140	245	245	330	330				
Enc	osure	IP00 oper	n type UL o	pen type (IP	20 closed ty	pe is availa	ble as optic	n)							

Note 1) The specifications above are established when the function code F80 = 3 (MD specification) is applied.

If using with the MD specification, specify MD specification when placing your order.

With the type FRN VG1S- J, a DC reactor with nominal applied motor capacity is provided as standard.

Note 2) When using a DC reactor, refer to the following.

- Type FRN _VG1S-_J: Provided as standard. (Specify MD specification when placing your order.)
- Type FRN □VG1S-□E, □C: Option.
- *1) When the rated output voltage is 440V
- "2) When the converted inverter output frequency is less than 1Hz, the inverter may trip earlier in some ambient temperature conditions if the motor is overloaded
- *3) When the power supply is 380 to 398V at 50 Hz or 380 to 430V at 60Hz, a connector inside the inverter must be reconnected accordingly.

The output of the inverter with 380V may drop depending on situations. For details, refer to Chapter 10 in the FRENIC-VG User Manual "Unit Type, Function Code Edition" 24A7
-0019.

*4) The auxiliary power input is used as an AC fan power input when combining the unit such as high power factor PWM converter with power regenerative function.(Generally not used.)

*5) Voltage unbalance [%] = $\frac{\text{Max. voltage [V] - Min. voltage [V]}}{\text{Three-phase average voltage [V]}} \times 67$

Use an AC reactor if the voltage unbalance exceeds 2%.

- 6) The value is calculated on assumption that the inverter is connected with a power supply capacity of 10 times the inverter capacity and %X is 5%.
- *7) The values shown apply when a DC reactor is used.

If using a generator for the power source, it may burn out with high-frequency current from the inverter. Use a generator with 3 to 4 times the specified power supply capacity. (When DC reactor not connected: approx. 4 times specified power supply capacity, when DC reactor connected: approx. 3 times specified power supply capacity)

- *8) Depending on the load condition, motor heating may increase with low carrier frequency, and therefore the MD specification should be specified when ordering the motor.
- *9) If running a synchronous motor at low carrier frequency, there is a risk of demagnetization due to permanent magnet overheating as a result of output current harmonics.

 The carrier frequency is low (2 to 4kHz), and therefore the motor allowable carrier frequency must always be checked. If unable to use the motor with low carrier frequency (2 to 4kHz), consider the HD specification (H80 = 0).

Standard specifications

LD specifications for light overload (Unit Type)

Three-phase 200V series

	ice-pilase 2004 sei	100										
	Type FRN⊡VG1S-2□	30	37	45	55	75	90					
Non	ninal applied motor [kW]	37	45	55	75	90	110					
Rate	ed capacity [kVA] (*1)	55	68	81	107	131	158					
Rate	ed current [A]	146	180	215	283	346	415					
Ove	erload current rating			120% of rated c	urrent -1min. (*2)							
	Main power Phase, Voltage, Frequency	3-phase 200 to 23	20V/50Hz, 30V/60Hz (*3)									
voltage	Auxiliary control power supply Phase, Voltage, Frequency	Single phase 200	to 230V,50Hz/60Hz	Z								
supply	Auxiliary input for fan power Phase, Voltage, Frequency (*4)	-	Single phase 200 200	to 220V, 50Hz to 230V, 60Hz (*3)								
	Voltage/frequency variation	Voltage: +10 to -1	15% (Voltage unbala	ance: 2% or less (*5	i)), Frequency: +5 to	-5%						
Power	Rated current [A] (with DCR)	138	167	203	282	334	410					
	(*6) (without DCR)	185	225	270	_	_	_					
	Required power supply capacity [kVA] (*7)	48	58	71	98	116	143					
Brak	king method /braking torque	Braking resistor discharge	control: 110% braking torque,	Separately installed braking re	esistor (option), Separately inst	talled braking unit (option for F	FRN75VG1S-2 or higher)					
Carr	rier frequency [kHz] (*8)		2 to	o 10		2	to 5					
App	rox.weight [kg]	25 32 42 43 62 105										
Encl	losure	IP00 open type UL open type (IP20 closed type is available as option)										

Three-phase 400V series

1111	ree-pnase 400 v se	lies																
	Type FRN⊡VG1S-4⊡	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500	630
Nor	minal applied motor [kW]	37	45	55	75	90	110	132	160	200	220	280	355	400	450	500	630	710
Rate	ed capacity [kVA] (*1)	57	69	85	114	134	160	192	231	287	316	396	495	563	640	731	891	1044
Rate	ed current [A]	75	91	112	150	176	210	253	304	377	415	520	650	740	840	960	1170	1370
Ove	erload current rating							120%	of rate	d curre	nt -1m	in. (*2)						
	Main power Phase, Voltage, Frequency	phase 380 to 480V, 3-phase 380 to 440V/50Hz, 380 to 480V/60Hz (*3)																
voltage	Auxiliary control power supply Phase, Voltage, Frequency	Sing	ingle phase 380 to 480V, 50Hz/60Hz															
supply	Auxiliary input for fan power Phase, Voltage, Frequency (*4)		-	-		Singl	e phas			′, 50Hz ′, 60Hz	(*3)							
ver s	Voltage/frequency variation	Volta	ige: +10	0 to -1	5% (Vo	ltage u	nbalan	ce: 2%	or less	s (*5)), I	requer	ncy: +5	to -5%	6				
Power	Rated current [A] (with DCF	68.5	83.2	102	138	164	210	238	286	357	390	500	628	705	789	881	1115	1256
	(*6) (without DCF	94.3	114	140	-	_	ı	-	-	-	-	_	-	-	_	-	ı	-
	Required power supply capacity [kVA] (*7)	48	58	71	96	114	140	165	199	248	271	347	436	489	547	611	773	871
Brak	Braking method /braking torque Braking resistor discharge						torque, Se	parately in	stalled bral	king resisto	or (option),	Separately	installed b	raking uni	t (option fo	r FRN200V	'G1S-4	or higher)
Carr	Carrier frequency [kHz] (*8) 2 to 10										2 t	0 5						2
App	rox.weight [kg]	25	26	31	33	42	62	64	94	98	129	140	245	245	330	330	555	555
Encl	losure	IP00	open t	ype UL	open	type (IF	20 clo	sed typ	e is av	ailable	as opt	ion)						

Note 1) The above specifications are for Function Code F80=1 (LD specification).

If using with an LD specification of 55kW or higher, specify LD specification when placing your order.

With the type FRN VG1S-J, a DC reactor with nominal applied motor capacity is provided as standard.

Note 2) When using a DC reactor, refer to the following.

- Type FRN UG1S-UJ: 45kW or below: provided as option, 55kW or above: provided as standard. (Specify LD specification when placing your order.)
- Type FRN \square VG1S- \square E, \square C: All capacities are provided as option.
- *1) The rated output voltage is 220V for 200V series and 440V for 400V series. *2) When the converted inverter output frequency is less than 10Hz, the inverter may trip earlier in some ambient temperature conditions if the motor is overloaded.
- *3) 200V series: Make an individual order for 220 to 230V/50Hz.

- 400V series: The inverters with the power supply of 380 to 398V/50Hz and 380 to 430V/60Hz must be switched using a connector inside the inverter.
 - The output of the inverter with 380V may drop depending on situations. For details, refer to Chapter 10 in the FRENIC-VG User Manual "Unit Type, Function Code
- *4) The auxiliary power input is used as an AC fan power input when combining the unit such as high power factor PWM converter with power regenerative function.(Generally not used.)
- Max. voltage [V] Min. voltage [V] *5) Voltage unbalance [%] = Three-phase average voltage [V]

Use an AC reactor if the voltage unbalance exceeds 2%.

- *6) The value is calculated on assumption that the inverter is connected with a power supply capacity of 500kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50kVA) and %X is 5%.
- *7) The values shown apply when a DC reactor is used.
 - If using a generator for the power source, it may burn out with high-frequency current from the inverter. Use a generator with 3 to 4 times the specified power supply capacity. (When DC reactor not connected: approx. 4 times specified power supply capacity), when DC reactor connected: approx. 3 times specified power supply capacity)
- *8) The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself. If the carrier frequency auto reduction selection (H104: digit 100) is cancelled, the unit continuous rated current will drop depending on the carrier frequency setting, and therefore

 - (For details, refer to Chapter 2 in the FRENIC-VG User Manual "Unit Type, Function Code Edition" 24A7-□-0019.)

Three-phase 400V series

T	ype FRN□○VG1S-4□	308	37S	45S	55S	75S	90S	110S	132S	160S	200S	220S	250S	280S	315S	630B(*5)	710B(*5)	800B(*5)
Nor	minal applied motor [kW]	30	37	45	55	75	90	110	132	160	200	220	250	280	315	630	710	800
Rat	ed capacity [kVA] (*1)	45	57	69	85	114	134	160	192	231	287	316	356	396	445	891	1044	1127
Rat	ed current [A]	60	75	91	112	150	176	210	253	304	377	415	468	520	585	1170	1370	1480
Ove	erload current rating		150% of rated current -1min. (*2)															
ge	Main power	DC inp	out type	(Refer	to the o	diode re	ctifier, l	PWM c	onverte	r specif	ications	s.)						
y voltage	Auxiliary control power supply Phase, Voltage, Frequency	Single	Single phase 380 to 480V, 50/60Hz															
Power supply	Auxiliary input for fan power Phase, Voltage, Frequency	No auxi	liary inpu	t for fan _l	power is	needed	Single	•	380 to			ı						
ď	Voltage/frequency variation	Voltag	e:+10 to	o -15%	, Frequ	ency:+5	to -5%	6										
Carrier frequency [kHz] (*4)							2											
App	Approx. weight [kg]		30	30	37	37	45	45	95	95	95	125	135	135	135	135×3	135×3	135×3
Enc	closure								IP	00 oper	type							

Three-phase 690V series

	med prided door derive											
	Γype FRN⊡SVG1S-69J	90	110	132	160	200	250	280	315	355	400	450
No	minal applied motor [kW] (*6)	90	110	132	160	200	250	280	315	355	400	450
Rat	ed capacity [kVA] (*1)	120	155	167	192	258	317	353	394	436	490	550
Rat	ed current [A]	100	130	140	161	216	265	295	330	365	410	460
Ov	erload current rating					150% of ra	ated current	-1min. (*2)				
<u>e</u>	Main power	DC input t	ype (Refer t	o the diode	rectifier, PV	VM converte	er specificat	ions.)				
y voltage	Auxiliary control power supply Phase, Voltage, Frequency	Single phase 575 to 690V, 50/60Hz										
ower supply	Auxiliary input for fan power Phase, Voltage, Frequency	Single pha		90V, 50/60H 00V, 50/60H								
٩	Voltage/frequency variation	Voltage:+1	0 to -15%,	Frequency:	+5 to -5%							
Ca	rrier frequency [kHz] (*4)						2					
Ap	orox. weight [kg]	45	45	95	95	95	135	135	135	135	135	135
End	closure					IF	00 open typ	oe				

Note 1) The specifications above apply when function code F80 = 0, 2, 3 (MD specification). (Default = 0) If F80 = 0, 2, "HD" appears on keypad.

For motors of differing voltage specifications and detailed selections, select a capacity that will ensure that the inverter rated current is equal to or greater than the motor rated current.

^{*1)} When the rated output voltage is 440 V (400V series) or 690 V (690V series).

[&]quot;2) When the converted inverter output frequency is less than 1Hz, the inverter may trip earlier in some ambient temperature conditions if the motor is overloaded.

^{*3) 400}V series: When the power supply is 380 to 398 V at 50Hz, or 380 to 430 V at 60Hz, a connector inside the inverter must be reconnected accordingly. 690V series: When the power supply is 575 to 600 V at 50Hz/60Hz, a connector inside the inverter must be reconnected accordingly.

^{*4)} If running a synchronous motor at low carrier frequency, there is a risk of demagnetization due to permanent magnet overheating as a result of output current harmonics. The carrier frequency is low (2kHz), and therefore the motor allowable carrier frequency must always be checked.

^{*5)} One set of the inverter consists of three stacks.

 $^{^{\}star}6)$ The nominal applied motor capacity is for a 690 V motor.

Standard specifications

LD specifications for light overload (Stack Type)

Three-phase 400V series

T	ype FRN□○VG1S-4□	308	37S	45S	55S	75S	90S	110S	132S	160S	200S	220S	250S	280S	315S	630B(*5)	710B(*5)	800B(*5)
Nor	minal applied motor [kW]	37	45	55	75	90	110	132	160	200	220	250	280	315	355	710	800	1000
Rat	ed capacity [kVA] (*1)	57	69	85	114	134	160	192	231	287	316	356	396	445	495	1044	1127	1409
Rat	Rated current [A]		91	112	150	176	210	253	304	377	415	468	520	585	650	1370	1480	1850
Ove	erload current rating		110% of rated current -1min. (*2)															
ge	Main power	DC inp	out type	(Refer	to the o	diode re	ectifier, l	PWM c	onverte	r specif	ications	s.)						
y voltage	Auxiliary control power supply Phase, Voltage, Frequency	Single	Single phase 380 to 480V, 50/60Hz															
Auxiliary input for fan power Phase, Voltage, Frequency No auxiliary input for fan power is needed Single phase 380 to 440V, 50Hz 380 to 480V, 60Hz (*3)																		
Voltage/frequency variation Voltage:+10 to -15%, Frequency:+5 to -5%																		
Carrier frequency [kHz] (*4)					2													
App	Approx. weight [kg]		30	30	37	37	45	45	95	95	95	125	135	135	135	135×3	135×3	135×3
Enc	closure								IP	00 oper	type							

Three-phase 690V series

	mee phase soot series											
1	ype FRN⊡SVG1S-69J	90	110	132	160	200	250	280	315	355	400	
Nor	minal applied motor [kW] (*6)	110	132	160	200	220	280	315	355	400	450	
Rat	ed capacity [kVA] (*1)	155	167	192	258	281	353	394	436	490	550	
Rat	ed current [A]	130	140	161	216	235	295	330	365	410	460	
Ove	erload current rating				110	% of rated c	urrent -1min.	(*2)				
e	Main power	DC input type	pe (Refer to t	he diode rec	tifier, PWM c	onverter spe	cifications.)					
y voltage	Auxiliary control power supply Phase, Voltage, Frequency	Single phas	Single phase 575 to 690V, 50/60Hz									
Power supply	Auxiliary input for fan power Phase, Voltage, Frequency	Single phas	Single phase 660 to 690V, 50/60Hz 575 to 600V, 50/60Hz (*3)									
۵	Voltage/frequency variation	Voltage:+10	to -15%, Fr	equency:+5 t	:o -5%							
Car	rier frequency [kHz] (*4)					2	2					
App	prox. weight [kg]	45	45	95	95	95	135	135	135	135	135	
Enc	losure					IP00 op	en type					

Note 1) The above specifications are for Function Code F80=1 (LD specification).

For motors of differing voltage specifications and detailed selections, select a capacity that will ensure that the inverter rated current is equal to or greater than the motor rated current.

^{*1)} When the rated output voltage is 440V (400V series) or 690V (690V series).

[&]quot;2) When the converted inverter output frequency is less than 1Hz, the inverter may trip earlier in some ambient temperature conditions if the motor is overloaded.

^{*3) 400}V series: When the power supply is 380 to 398 V at 50Hz, or 380 to 430 V at 60Hz, a connector inside the inverter must be reconnected accordingly. 690V series: When the power supply is 575 to 600 V at 50Hz/60Hz, a connector inside the inverter must be reconnected accordingly.

^{*4)} If running a synchronous motor at low carrier frequency, there is a risk of demagnetization due to permanent magnet overheating as a result of output current harmonics. The carrier frequency is low (2kHz), and therefore the motor allowable carrier frequency must always be checked.

^{*5)} One set of the inverter consists of three stacks.

 $^{^{\}star}6)$ The nominal applied motor capacity is for a 690 V motor.

Common items

Common specifications for inverters

	ltem			Unit Type	Stack Type			
Control	Motor control method	For inductio	n motor	Vector control with speed sensor Speed sensorless vector control V/f control				
	metriou	For synchro	nous motor	Vector control with speed sensor (including magne	tic pole position detection)			
		Test mode		Simulated operation mode				
		Setting resolution	Speed setting	Analog setting: 0.005% of max. speed Digital setting: 0.005% of max. speed				
		Octung resolution	Torque setting Torque current setting	0.01% of rated torque				
Induction motor	Vector control	Control accuracy	Speed	Analog setting: ±0.1% of max. speed (25±10°C) Digital setting: ±0.005% of max. speed (-10 to 50°C)	Analog setting: ±0.1% of max. speed (25±10°C) Digital setting: ±0.005% of max. speed (-10 to 40°C)			
control	with speed sensor		Torque	±3% of rated torque (with dedicated motor)				
		Control response	Speed	600Hz *1	100Hz			
		Maximum s	peed	500Hz by inverter output frequency conversion *1 *2	150Hz by inverter output frequency conversion			
		Speed control range		1:1500 When the base speed is 1500 r/min, 1 to 1500 r/min to max. speed (with no. of PG pulses is 1024P/R) 1:6 (constant torque range: constant output range)				
		Catting recolution	Speed setting	Analog setting: ±0.005% of max. speed Digital setting: ±0.005% of max. speed				
		Setting resolution	Torque setting Torque current setting	0.01% of rated torque				
	Speed sensorless	Control accuracy	Speed	Analog setting: ±0.1% of max. speed (25±10°C) Digital setting: ±0.1% of max. speed (-10 to 50°C)	Analog setting: ±0.1% of max. speed (25±10°C) Digital setting: ±0.1% of max. speed (-10 to 40°C)			
	vector control		Torque	±5% of rated torque				
		Control response	Speed	40Hz *1	20Hz			
Induction motor		Maximum s	peed	500Hz by inverter output frequency conversion *1 *3	150Hz by inverter output frequency conversion			
control		Speed contr	rol range	1:250 When the base speed is 1500 r/min, 6 to 1500 r/min to max. speed 1:4 (constant torque range: constant output range)				
		Setting reso	lution	Analog setting: 0.005% of max. speed Digital setting: 0.005% of max. speed				
	V/f control	Output frequency	control accuracy	Analog setting: ±0.2% of max. output frequency (25±10°C) Digital setting: ±0.01% of max. output frequency (-10 to 50°C)	Analog setting: ±0.2% of max. output frequency (25±10°C) Digital setting: ±0.01% of max. output frequency (-10 to 40°C)			
		Maximum fr	equency	500Hz	150Hz			
		Control rang	je	0.2 to 500Hz 1:4 (constant torque range: constant output range)	0.2 to 150Hz 1:4 (constant torque range: constant output range)			
		Setting resolution	Speed setting	Analog setting: 0.005% of max. speed Digital setting: 0.005% of max. speed				
			Torque setting	0.01% of rated torque				
Synchronous motor control	Vector control with speed sensor	Control accuracy	Speed	Analog setting: ±0.1% of max. speed (25±10°C) Digital setting: ±0.005% of max. speed (-10 to 50°C)	Analog setting: ±0.1% of max. speed (25±10°C) Digital setting: ±0.005% of max. speed (-10 to 40°C)			
			Torque	±3% of rated torque (with dedicated motor)				
		Response control	Speed	600Hz *1	100Hz			
		Maximum s	peed	500Hz by inverter output frequency conversion *1	150Hz by inverter output frequency conversion			
1) Maximum value when the carrier frequency is 10kHz. Depending on conditions such as the carrier frequency setting, etc., this value may not be reached.								

^{*1)} Maximum value when the carrier frequency is 10kHz. Depending on conditions such as the carrier frequency setting, etc., this value may not be reached.
*2) Vector control with speed sensor: carrier frequency 5kHz: 400Hz, carrier frequency 2kHz: 150Hz

^{*3)} Sensorless vector control: carrier frequency 5kHz: 250Hz, carrier frequency 2kHz: 120Hz

Common items

Common specifications for inverters

	lte	em		Unit Type	\$	Stack Type				
Synchronous motor control	Vector control with speed sensor	Speed control range	When the base	o. of PG pulses is 1024P e speed is 1500 r/min, n to max. speed	/R)					
	Running and	d operation	KEYPAD operation: CW or CCW operation by or less key, and less key Digital input signal operation: FWD or REV command, coast-to-stop command, reset input, multistep speed selection command, etc.							
	Speed settir	ng	Setting resisto Analog input UP/DOWN co Multistep spee Digital signal Serial link ope	UP/DOWN control :Speed increases when UP signal (DI) is ON, and decreases when DOWN signal (DI) is ON Multistep speed :Up to 15 different speeds can be selected by combining four external input signals (DI)						
			Received frequ	uency differs with the spe	eed detector used.					
			PG	interface used	Speed detector	Received frequency				
			Induction	Inverter PG interface OPC-VG1-PG0	Complimentary type PG Open collector type PG	100kHz/Max				
	Speed detec	ction	Synchronous	OPC-VG1-PG OPC-VG1-PMPG	Line driver type PG Line driver type PG (with pole position function) Open collector type PG	500kHz/Max 100kHz/Max				
			OPC-VG1-S	PGT	(with pole position function) Serial PG (17-bit absolute encoder)					
			* Certain PG ir	nterface options require a	a dedicated cable.					
Control	Speed contr	rol	The PI calculation w/ feed forward term is performed. Control parameter switchover: The control parameter can be switched by external signals							
	Running sta	tus signal	Transistor output: Inverter running, Speed equivalence, Speed detection, inverter overload early warning, torque limiting, etc. Analog output: Motor speed, Output voltage, Torque, Load factor, etc.							
	Acceleration	n/Deceleration time	0.01 to 3600s (4 independent settings for acceleration and deceleration selectable with external signals) (S-curve acceleration/deceleration in addition to linear acceleration/deceleration)							
	Gain for spe	eed setting	Sets the propor	tional relationship between	analog speed setting and motor spe	ed in the range of 0 to	200%.			
	Jump speed	i	Jump speed (3	3 points) and jump width	(1 point) can be set.					
	Rotating mo	tor pick up (Flying start)	A rotating motor can	be smoothly picked up by the inver	ter without stopping. (Valid for vector control with	h speed sensor/sensorless ve	ector control)			
	Auto-restart a	fter momentary power failure	Automatic res	tart is available without s	topping the motor after a moment	tary power failure.				
	Slip comper	nsation control	Compensates for	r the decrease of speed due t	o load and realizes stable operation (by	V/f control w/ induction	motor).			
	Droop contr	ol	The motor spe	ed droops in proportion	to output torque (disabled with V/	f control).				
	Torque limiti	ng		to predetermined values (selectional signal (2 steps) settings are a	able from "common to 4 quadrants", "inde available.	ependent driving and braki	ing", etc.)			
	Torque conti	rol			(up to 300% by gain adjustment) setting is available using an option	onal card.				
	PID control		Analog input b	y PID control is possible						
	Cooling fan	ON/OFF control	Cooling fan is stopped during motor stoppage and low temperature to elongate the cooling fan life and reduce cooling fan noise.							
	Toggle moni	itor control	Monitors that the communications between the host device (PLC) and the inverter are working properly.							
	Torque hias				tting (hold function) are enabled b ation direction function) and exter	-				

	lte	em	Unit Type Stack Type						
	Motor select	tion	Motor can be selected from three types by using (F79) or by combining the external signals (DI signals).						
	Temperature	edetection	NTC thermistor (Fuji Electric product or equivalent item) PTC thermistor (Trip level set by parameter) (for motor overheat protection)						
	PG detection	n circuit self diagnosis	Self-diagnosis for detection circuit of the pulse encoder input signal (PA, PB)						
	Load adapti	ve control function	Running efficiency of the unit can be improved by calculating the max. elevation speed achieved by the weight for a vertical transfer unit or other similar units.						
	Multi-winding	Multiple winding motor drive	Option: Use of OPC-VG1-TBSI Maximum number of motor windings: 6 Control specification: Only vector control with a speed sensor is available.						
	motor control	Direct parallel connection system *1	Option: Use of OPC-VG1-TBSI Maximum number of parallel modules: 3 Carrier frequency is fixed at 2kHz. Restrictions apply to usage conditions such as the output cable length.						
Control	UP/DOWN o	control	Speed setting is possible by combining the UP command, DOWN command, and zero clear command using the external signal (DI signal).						
	Stopping fur	nction	3 types of stopping functions: STOP 1, 2 and 3.						
	PG pulse ou	itput	Outputs the input pulse such as a motor PG signal by fixed or free frequency dividing. Open collector and complimentary (same voltage as PGP terminal) can be switched by setting the unit internal switch.						
	Observer		Suppresses load disturbances and vibrations.						
	Off-line tunir	ng	Rotary type and non-rotary type are available for tuning the motor constants.						
	On-line tunir	ng	Used for tuning continuosly motor constants due to the motor temperature change.						
	Position control		Standard function: position control by servo lock and built-in transmitting circuit. Options: OPC-VG1-PG (PR): for line driver type pulse command input OPC-VG1-PGo (PR): for open collector type pulse command input						
	Pulse train s	synchronous operation	Options: OPC-VG1-PG (PR) : for line driver type pulse command input OPC-VG1-PGo (PR) : for open collector type pulse command input						
		Display	7-segment LED, LCD with backlight						
		Language display	Japanese, English, Chinese, Korean						
		Running/stopping	Detected speed value Torque reference value Torque reference value Torque reference value Torque reference value Torque calculation value Detected speed value Torque reference value Torque calculation value Power consumption (motor output) Output voltage Magnetic-flux reference value PID feedback value PID output value Optional monitor 1 to 6 Heat sink temperature Indept operation time/no. of starts (for each motor), etc.						
		Setting mode	Names and data are displayed.						
Display and setting	Keypad	Alarm mode	Displays the following alarm codes; dbH (Braking resistor overheat)(") Erf (Memory error) Erg (KEYPAD panel communication error) Erg (Network error) Erg (Notwork error) Erg (Speed disagreement) In (Input phase loss)(") OH3 (Inverter internal overheat) OH4 (Motor overheat) OH4 (Motor 1 overload) OL2 (Motor 3 overload) PbF (Charging circuit error) OFB (Degration procedure error) Erg (Operation procedure error) Erg (Output wiring error) LU (Indervoltage) UU (Indervoltage) OH2 (External alarm input) OH2 (Motor 2 overload) OL2 (Motor 2 overload) OU (Overvoltage) Pg (Pg error) PbF (Charging circuit error) (") Erg (Indraware error) Erg (Ind						
		Minor fault	[L-AL] is displayed. Stores and displays the detailed cause that triggers the minor fault.						
		Alarm during running	The latest and last ten pieces of alarm codes and the latest and the last three pieces of alarm detailed data are stored. Stores and displays alarm date and time by the calendar and time display function [accuracy: ±27 sec/month (Ta=25°C)]. Data stored period: 5 years or more (at ambient temperature 25°C) Battery: built-in as standard for 30kW or higher capacity models, available as option for 22kW or lower capacity models. (available as option: OPK-BP)						

^{*1:} Supported when the ROM version is H1/2 0020 or later, and the SER.No. product version is BC or later.
*) The stack type is not supported

Common items

Common specifications for inverters

	lte	em	Unit Type	Stack Type					
		Historical trace (*1)	Loads sampling data retained in the inverter to disp Sampling time: 50µs to 1s	olay with a graph.					
		Real-time trace (*1)	Loads data from the inverter on a real-time basis to Sampling time: 1ms to 1s	display with a graph.					
Display and setting	Loader	Trace back	Loads sampling data retained in the inverter at an alarm to display wi Sampling time: 50µs to 1s (Note that sampling is enabled at 400µs or Sampling data are stored into the memory using the battery power. D Battery: built-in as standard for 30kW or higher capacity models, available a	r more except current.) lata stored period: 5 years or more (at ambient temperature 25°C)					
		Operation monitor (*1)	I/O monitor, system monitor, alarm history monitor						
		Function code setting	Function code setting states can be checked. Also edit, transfer, comparison, initialization are available.						
	Charge lam	0	Lit when the power is being supplied to the inverter	r body. Lit even with control power.					
	Main circuit	capacitor life	Auto life judgment function installed						
Maintenance	Common functions		Displays and records accumulated time for control PCB Displays and records inverter operation time. Displays and records the maximum output current and the control of the						
	RS-485		This is a input terminal to connect computers and prog	grammable controllers via RS-485 communications.					
Communications	USB		USB connector (Mini B type) for connection with a compute support loader: function code edit, transfer verification, and						
Compatibility with	Function code data		Set the VG7 function codes to activate each operation of the code (ex Values read from the VG7 can be written to the FRENIC-VG without cl	· ·					
earlier models		Communications	T-Link, SX bus, and CC-Link are fully compatible. The host PLC software can be used without any change (except for some special items).						
	Installation a	adaptor	An adapter to fit the installation dimensions of earlier models is available as option.						
Safety function	Standard function Stopping function		Safe Torque Off (STO) • Stops the inverter output transistor by hardware -and the by turning OFF digital input signals (EN1 terminal or EN2)						
Product standard	Conformance to standard(*3)		US and Canada Safety Standard UL, cUL (UL508 Machinery Directive IEC/EN ISO13849-1: PL-d IEC/EN60204-1: stop category 0 IEC/EN61800-5-2: SIL2 IEC/EN62061: SIL2 Low Voltage Directive EN61800-5-1: Over voltage category 3 EMC Directive IEC/EN 61800-3(Certification being approved), IEC/EN 61326-3-1 (Emission) EMC filter (Option): Unit type (220kW or lower): Category 2 Unit type (280kW or higher): Category 3 Stack type: Category 3 (Immunity) 2nd Env.	C, C22.2 No.14)(*2)					
	Usage envir	onment	Indoor use only. Free from corrosive and flammable gases, dusts, ar	nd oil mist (pollution degree 2 - IEC60664-1). No direct sunlight.					
	Ambient ten	nperature	-10 to +50°C (-10 to +40°C: In case of 22 kW or lower installed side-by-side without clearance)	-10 to +40°C					
	Ambient hur	midity	5 to 95% RH (No dew condensation allowed)						
Installation	Altitude		3000m or less However, the output may be reduced at the altitude of the insulation class of the control circuit is changed fror	1001 to 3000m For use at the altitude of 2001 to 3000m, n "Enhanced insulation" to "Basic insulation".					
environment	Vibration		200V 55kW or less, 400V 75kW or less 3mm: 2 to 9Hz or less, 9.8m/s²: 9 to 20Hz or less, 2m/s²: 20 to 55Hz or less, 1m/s²: 55 to 200Hz or less 200V 75kW or more, 400V 90kW or more 3mm: 2 to 9Hz or less, 2m/s²: 9 to 55Hz or less, 1m/s²: 55 to 200Hz or less	0.3mm: 2 to 9Hz 1m/s² : 9 to 200Hz					
	Storage tem	perature	-25 to +70°C (-10 to +30°C for long-term storage)						
	Storage hun	nidity	5 to 95% RH (No dew condensation allowed)						
			ס זוט אסיס חח (ואט dew condensation allowed)						

^{*1)} This function is available by the licensed FRENIC VG Loader (WPS-VG1-PCL).

*2) C22.2 No.14 does not conform to the FRN160, 200, 220, 355, or 400VG1S-4J.

*3) Certification of the stack type three-phase 690V series is currently pending.

*4) The three-phase 690V series does not comply with UL or cUL Standards.

— 32 —

Terminal Functions

Main circuit and analog input terminal

Category	Symbol	Terminal name	Unit Type	Stack Type				
	L1/R,L2/S,L3/T	Power input	Connects a 3-phase power supply.	Not available in the stack type				
	U,V,W	Inverter output	Connects a 3-phase motor.	Connects a 3-phase motor.As for the number of stacks per phase, 1 terminal is allotted per phase (stack).				
	P (+),P1	For DC reactor connection	Connects a DC reactor.	The "P1" terminal for connecting a DC reactor is not available with the stack type.				
	P (+),N (-)	For BRAKING UNIT connection/For DC bus	Connects a braking resistor via the braking unit. Used for a DC bus connection system.	Used as a DC bus.				
Main circuit	P (+),DB	For EXTERNAL BRAKING RESISTOR connection	Connects an external braking resistor (optional).	The "DB" terminal for connecting an external braking resistor is not available with the stack type.				
	G	Grounding for inverter	Ground terminal for inverter chassis.					
	R0,T0	Auxiliary control power supply	Connects the same AC power supply as that of the r	nain circuit to back up the control circuit power supply.				
	R1,T1	Auxiliary input for fan power	Used as a power input for the AC cooling fan inside the inverter to combine with the high factor PWM converter with power regenerative function (on the models of 200V series 37kW or more, 400V series 75kW or more). Generally this is not necessary as long as the inverter is used individually.	Used as a power input to the AC cooling fan in the inverter. (90kW or higher) Connection is not possible for 75kW or lower.				
	DCF1 DCF2	DC fuse blow-out detection input	Not available in the unit type	Connects a microswitch to detect blow-out of the DC fuse and corresponds to the "b" contact output. DC24V 12 mA Typ				
	13	Potentiometer power supply	Used for power supply for a speed setting PO	T (variable resistor: 1 to 5kΩ). DC10V 10mA Max				
Speed setting	12	Voltage input for speed setting	Used for analog reference voltage input. Reversible operation	can be selected by ±signals: 0 to +10V DC /0 to max. speed.				
	11	Analog input common	Common terminal to input signals.					
Analog input	Ai1	Analog input 1	The following functions can be selected and set according to the external analog input voltage. 0: Input signal off [OFF] 1: Auxiliary speed setting 1 [AUX-N1] 2: Auxiliary speed setting 2 [AUX-N2] 3: Torque limiter (level 1) [TL-4: Torque limiter (level 2) [TL-REF2] 5: Torque bias reference [TB-REF] 6: Torque reference [T-REF] 7: Torque current reference [T 8: Creep speed 1 in UP/DOWN setting [CRP-N1] 9: Creep speed 2 in UP/DOWN setting [CRP-N2] 10: Magnetic-flux reference [T 11: Detected speed [LINE-N] 12: Motor temperature [M-TMP] 13: Speed override [N-OR] 14: Universal Ai [U-AI] 15: PID feedback value 1 [PID-FB1] 16: PID reference value [PID-REF] 17: PID correction gain [PID-G]					
	Ai2	Analog input 2	18-24: Custom Ai1 to 7 [C-Al 1 to 7] 25: Speed main setting [N-RE Ai2 can be switched over between voltage input and current input by an int	ernal switch. However, only a "Speed Setting" is available for the current input.				

Digital input terminal

	Item		Unit Type	Stack Type				
	FWD	Forward operation and stop command	[FWD-CM] ON: The motor runs in the forward direction.	. [FWD-CM] OFF: The motor decelerates and stops.				
	REV	Reverse operation and stop command	[REV - CM] ON: The motor runs in the reverse direction. [REV - CM] OFF: The motor decelerates and stops.					
	X1	Digital input 1		Self maintenance selection [HLD] 7: Coast-to-stop command [BX]				
	X2	Digital input 2		ging operation [JOG] 11: Speed setting N2/Speed setting N1 [N2/N1] C brake command [DCBRK] 15: ACC/DEC cleared to zero command [CLR] JP command in UP/DOWN setting [UP]				
	Х3	Digital input 3	18: DOWN command in UP/DOWN setting [DOWN] 19: Write enable 20: PID control cancel [KP/PID] 21: Inverse mode change over [IVS]	e for KYEPAD (data can be changed) [WE-KP] 22: Interlock signal for 52-2 [IL]				
Digital input (Switching is available	X4	Digital input 4	 Write enable through link [WE-LK] 24: Operation selection through link [LE] 25: Universal DI [U-DI] 26: Pick up start mode Synchronization command [SYC] 28: Zero speed locking command [LOCK] 29: Pre-exciting command [EXITE] Speed reference cancel [N-LIM] 31: H41 (torque reference) cancel [H41-CCL] 32: H42 (torque current reference) cancel [I 					
between Sink and Source.)	X5	Digital input 5	3: H43 (magnetic-flux reference) cancel [H43-CCL] 34: F40 (Torque 5: Torque limit (Selection of level 1 or level 2) [TL2/TL1] 36: Bypass	control mode 1) cancel [F40-CCL) BPS] 37,38: Torque bias command 1 / 2 [37: TB1, 38: TB2]				
	X6	Digital input 6	39: Droop selection [DROOP] 40: Zero hold [ZH-Al1] 41: Ai2 zero ho 44: Ai1 polarity change [REV-Al1] 45: Ai2 polarity change [REV-Al2] 48: PID output inverse changeover [PID-INV] 49: PG alarm cancel [F	46: Ai3 polarity change [REV-AI3] 47: Ai4 polarity change [REV-AI4]				
	X7	Digital input 7	,	e 4) [STOP2] 54: STOP3 (The motor stops with torque limiter) [STOP3]				
	X8	Digital input 8	 55: DIA card enable [DIA] 56: DIB card enable [DIB] 57: Multi-windir 58-67: Custom Di 1 to 10 [C-DI 1 to 10] 68: Load adaptive parametr 70: PIDFF term effective [PID-FF] 72: Toggle signal 1 [TGL1] 73: Toggle 	er selection [AN-P2/1] 69: PID clear [PID-CCL]				
	X9	Digital input 9	75:NTC thermistor alarm cancel [NTC-CCL] 76: Lifetime early warning cancel [LF-CCL] 78: PID Feedback change-over signal [PII 79: PID torque bias selection [TB-PID]					

Terminal Functions

Digital input terminal

	Item		Unit Type	Stack Type				
	PLC	PLC signal power supply	Connects to PLC output signal power supply. It can also be used as a power supply for loads connected to the transistor outputs. $+24V~(22~to~27)~max.100mA$					
	СМ	Digital input common	Common terminal to digital input signals.					
Digital input (Safety	EN1,EN2	Safety function	When the circuit is open between EN1-PS or E	N2-PS terminals, the switching elements of				
function)	PS	input terminal	the inverter main circuit is turned off and the output is shut off.					

Analog output and transistor output terminal

	Item		Unit type	Stack type				
	AO1	Analog output 1	Provides the monitor signal of 0 to ±10V DC for signals from the following: 0: Detected speed (Speedometer, unipolar) [N-FB1+] 1: Detected Speed (Speedometer, unipolar) [N-FB1+] 1: Detected Speed (Speedometer) [N-REF2] 2: Speed setting 2 (Before acceleration/deceleration calculation) [N-REF2]	Speedometer, bipolar)[F-FB1±]				
Analog output	AO2	Analog output 2	5: Detected line speed [LINE-N±] 6: Torque current reference (Torque ammeter, bipolar) [IT-REF±] 7: Torque current reference (Torque ammeter, unipolar) [IT-REF+] 8: Torque reference (Torque meter, bipolar) [T-REF±] 9: Torque reference (Torque meter, unipolar) [T-REF+] 10: Motor current rms value [V-AC] 11: Motor voltage rms value [V-AC]					
	AO3	Analog output 3	S. Iolique relevance (tolque inleter, unipolar) [1-NcF-] 10. Motor output in this 12: Input power (motor output) [PWR] 13: DC link circuit voltage [V-DC] 14: 31-37: Custom AO1 to 7 [C-AO1 to 7] 38: Input power [PWR-IN] 39: Magn	: +10V output test [P10] 15: -10V output test [N10]30: Universal AO [U-AO]				
	М	Analog output common	Common terminal to input signals.					
	Y1	Transistor output 1	Outputs the selected signals from the following items: 0: Inverter running [RUN] 1: Speed existence [N-EX] 2: Speed agreement [N-AG1] 3: Speed equivalence [N-AR] 4, 5, 6: Detected speed 1, 2, 3 [4: N-DT1, 5: N-DT2, 6: N-DT3] 7: Stopping on undervoltage [LU] 8: Detected torque polarity (braking/driving) [B/D] 9: Torque limiting [TL] 10, 11: Detected torque [10: T-DT1, 11: T-DT2] 12: KEYPAD operation mode [KP] 13: Inverter stopping [STOP]					
	Y2	Transistor output 2	14: Operation ready completion [RDV] 15: Magnetic-flux detection signal [MF-D 17: Motor M3 selection status [16: SW-M3] 18: Brake release signal [BRK] 19: A 21: Alarm indication 3 [AL4] 22: Alarm indication 4 [AL8] 23: Fan operation signal 26: Heat sink overheat early warning [INV-OH] 27: Synchronization completion 3 30: Under decelerating [IV-DEC] 31: Inverter overload early warning [INV-OL] 32: Alates overload early warning [INV-OL] 33: Alates overload early warning [INV-OL] 34: Alates overload early warning INV-OL] 36: Alates overload early warning INV-OL] 36: Alates overload early warning INV-OL] 36: Alates overload early warning INV-OL] 37: Alates overload early warning INV-OL] 38: A	Narm indication1 [AL1] 20: Alarm indication 2 [AL2] al [FAN] 24: Auto-resetting [TRY] 25: Universal DO [U-DO] signal [SY-C] 28: Lifetime alarm [UFE] 29: Under accelerating [U-ACC] : Motor temperature early warning [M-OH]				
Transistor output	Y3	Transistor output 3	52: Multiple-winding cancel response [MEC-AB] 53: Master selected status [MSS] 54: Parallel system self station alarm [AL-SF] 55: Communications error stopping [LES] 56: Alarm relay [ALM] 57: Minor fault [L-ALM] 58: Maintenance early warning [MNT] 59: Braking transistor error [DB/60: DC fan lock signal [DCFL] 61: Speed agreement 2 [N-AG2] 62: Speed agreement 3 [N-AG3] 63: Axial fan operation stop signal [MFAN] 66: Droop selection response [DSAB] 67: Torque command/torque current command cancel response [TCL-C] 68: Torque limit mode cancel response [T40-Ai 71: 73 loading command [PRT-73] 72: Y-terminal test output ON IY-ON] 73: Y-terminal test output OFFIY-OFFI 75: Clock battery life					
	Y4	Transistor output 4						
	CMY	Transistor output common	Common terminal to transistor output signals.					
	Y5A,Y5C	Relay output	Same functions as for Y1 to Y4 can be selected	d.				
Relay output	30A,30B,30C	Alarm relay output(for any fault)	Outputs a potential-free contact signal (1C) when the inverter. Can select alarm for active or non					
Communications	DX+,DX-	RS-485 communicationsinput /output	Input/output terminals for RS-485 communicatio Can connect up to 31 inverters through a multidr	ns. rop (daisy chain) connection. Half-duplex method.				
	USB port	USB port	Front access, connector type: mini-B, USB 2.0) Full Speed				
	PA,PB	Pulse generator 2-phase signal input	Terminals for connecting 2-phase signal of pul	se generator.				
	PGP,PGM	Pulse generator power supply	+15V DC pulse generator power supply (can b	ne switched to +12V).				
Speed detection	FA,FB	Pulse generator output	Outputs pulse encoder signal with a frequency that can Open collector and complimentary (same voltage as PG					
	СМ	Pulse generator output common	Common terminals to FA and FB.					
Temperature detection TH1,THC NTC Thermistor PTC Thermistor connection			Motor temperature can be detected with the N The motor overheat protective level can be sp					

^{*1:} Supported when the ROM version is H1/2 0020 or later, and the SER.No. product version is BC or later. *) The stack type is not supported.

Protective Functions

Protective function details

Category	Item	Specifications	Displays	Relevant function codes
Protective Functions	Braking transistor abnormal (*)	Stops the inverter if it detects a braking transistor abnormality. (Unit type: 200 V 55kW or lower, 400 V 160kW or lower) Be sure to shut off the inverter primary power when this alarm is detected.	<i>4</i> 6 <i>R</i>	H103
	Braking resistor overheating (*)	Estimates the braking resistor temperature and stops the inverter if the allowable value is exceeded. Setting E35 to 37 is required depending on the used resistor.	дЬН	E35 to E37
	DC fuse blown	This is displayed if the fuse for the main circuit DC blows because of a short-circuit in the IGBT circuit or other reason. This function is provided to prevent secondary accidents. Since inverter damage may have occurred, contact Fuji immediately. Unit type: Not less than 200V and 75kW, Not less than 400V, 90kW Stack type: Full capacity	dEF	
	Excessive position deviation	Activated if the positional deviation between the command and the detected values exceeds ten times function code o18 "Excessive deviation value" in synchronized operation.	d0	o18
	Encoder communications error	Activated if an encoder communications error is detected when using an ABS encoder of 17-bit high resolution (option card OPC-VG1-SPGT).	EC	
	Safety circuit error *1	Activated when the input for either EN1 or EN2 only turns off (mismatch judged if 50 ms exceeded). Protective function alarms can only be reset by rebooting the power.	EEF	
	Ground fault	Activated by a ground fault in the inverter output circuit. When ground-fault current is large, the overcurrent protective function may be activated. This function is provided to protect the inverter. Connect a separate earth-leakage protective relay or an earth-leakage circuit breaker if it is required to prevent accidents such as injury or fire.	EF	H103
	Memory error	Activated if a fault such as a "write error" occurs in the memory. (The number of times to write into the memory (nonvolatile memory) is limited (100,000 to 1,000,000 times). If data is written frequently and needlessly with the save all function, data changing and saving may be disabled, resulting in a memory error.)	Er I	
	KEYPAD panel communication error	Activated if a communications error is detected between the inverter control circuit and the keypad when the start/stop command from the keypad is valid (function code F02=0). NOTE: A keypad communications error does not display or output an alarm when the inverter is operated by external signal input or the link function. The inverter continues operating.	Er2	F02
	CPU error	Activated if a CPU error occurs.	ЕгЗ	
	Network error	Activated if a communication error occurs due to noise, etc. when the inverter is operated through T- Link, SX bus, E-SX bus, CC-Link, field bus, etc.	Er4	o30,o31,H107 E01 to E14 E15 to E28
	RS-485 error	Activated if an RS-485 communications error occurs when function code H32 is set to 0 to 2 during inverter running via RS-485 communications and function code H38 is set between 0.1 and 60.0. This function is activated if the communications circuit is disconnected for longer than the time set in H38.	Er5	H32,H33 H38,H107
	Operation procedure error	This function is activated at the following times: 1) If multiple option cards are installed. 2) If multiple PG options are installed, and two function selection switches are set the same. 3) Activated if H01 auto tuning is started with any of the selected terminals for digital inputs [BX], [STOP1], [STOP2], or [STP3] turned on. 4) Activated if the keyon the keypad is not pressed for 20 seconds or more after selecting H01 auto tuning.	Er8	H01
	Output wiring error	Activated if the wires are not connected in the inverter output circuit during auto tuning.	Er7	H01
	A/D converter error	Activated if an error occurs in the A/D converter circuit.	Er8	
	Speed disagreement	Activated if the difference between the speed reference (speed setting) and the motor speed (detected speed, predicted speed) becomes excessive. The detection level and detection time can be set using function codes.	Er9	E43,E44,E45 H108,H149
	UPAC error *1	Activated when a UPAC option hardware fault occurs, a communication error occurs with the inverter control circuit, or the backup battery is consumed.	ErR	
	Inverter communications error	Activated if a transmission error occurs during communications between inverters using the high-speed serial communications terminal block (option).	Erb	H107
	Simulated fault	A simulated alarm state can be generated by keypad operation or the PC loader.	Err	E01 to E14 H108,H142
	Encoder error	Activated if an encoder error or failure is detected when using an ABS encoder of 17-bit high resolution (option card OPC-VG1-SPGT).	EE I	

^{*1:} Supported when the ROM version is H1/2 0020 or later, and the SER.No. product version is BC or later.
*) The stack type is not supported.

Protective Functions

Protective function details

Category	Item	Specifications	Displays	Relevant function codes
Protective Functions	Input open phase (*)	The inverter is protected against damage due to input open phase. An open phase may not be detected if the connected load is small or a DC reactor is connected.	Lin	E45
	Stalled at start	Activated if the torque current reference value is equal or higher than the level set in function code H140, and the detected speed value or estimated speed value is equal or lower than the speed set in function code F37 "stop speed", for the period of time set in function code H141. The detection level and detection time can be set using function codes.	LOE	H108,H140,H141
	Undervoltage	Activated if the DC link circuit voltage decreases to the undervoltage level due to a reduction in the supply voltage. The alarm is not output when the DC link circuit voltage decreases and function code F14 is set to "3 to 5". • Undervoltage detection level: 200V series: 180V DC, 400V series: 360V DC, 690V series: 470V DC	LU	F14
	NTC thermistor disconnection	Activated if the thermistor circuit is disconnected when the use of NTC thermistors for motors M1, 2, 3 is configured with the corresponding function codes P30, A31 and A131. Also activated in extreme low temperatures (approx30°C or lower).	nrb	P30,A31,A131 H106
	Overcurrent	Cuts the output if motor current exceeds the inverter overcurrent specified value. This is also activated if the output current to the motor during synchronous motor control exceeds the value set for the overcurrent protection level (P44, A64, A164).	OC	P44,A64,A164
	Overheating of heat sink	Activated if the temperature of the heat sink that cools the rectifier diodes and the IGBTs increases due to cooling fan stoppage.	OH I	
	External alarm input	The inverter stops when the external alarm signal (THR) becomes active. This alarm is activated via control terminals (assigned to THR) which are connected to alarm terminals of external devices such as a braking unit or a braking resistor (in case these devices trip).	0H2	E01 to E14 F106
	Inverter internal overheat	Activated if the ambient temperature of the control PC board increases due to poor ventilation of the inverter.	0H3	
	Motor overheat	Activated if the detected temperature of the built-in NTC thermistor for motor temperature detection exceeds the data of function code E30 "Motor overheat protection."	ОНЧ	E30,H106
	Motor 1 overload	Activated if the motor 1 current (inverter output current) exceeds the behavior level set by the function code F11.	OL I	F11,H106
	Motor 2 overload	Activated if the motor 2 current (inverter output current) exceeds the behavior level set by the function code A33.	0L2	A33,H106
	Motor 3 overload	Activated if the motor 3 current (inverter output current) exceeds the behavior level set by the function code A133.	DL 3	A133,H106
	Inverter overload	Activated if the output current exceeds the overload characteristic of the inverse time characteristic. The inverter is stopped according to the temperatures of the inverter cooling unit and the switching element that is calculated from the output current.	OLU	F80
	Output phase loss detection	Stops the inverter if an open phase is detected in the output wiring during operation.	OPL	H103,P01,A01,A101
	Overspeed	Activated if the motor speed (detected speed value or estimated speed value) exceeds 120% (can be changed by H90) of the setting of function code "maximum speed" (F03, A06, A106).	05	H90
	Overvoltage	Activated if the DC link circuit voltage exceeds the overvoltage level due to an increase of supply voltage or regenerative braking current from the motor. However, the inverter cannot be protected from excessive voltage (high voltage, for example) supplied by mistake. • Overvoltage detection level 200V series: 405V DC, 400V series: 820V DC, 690V series: 1230V DC	OU	
	PG error	Activated if the PA, PB or power supply circuits of the encoder interface are disconnected. However, a PG error is not activated when sensor-less control or V/f control is selected.	P9	H104
	Charge circuit error (*)	Activated if the bypass circuit of the DC link circuit (magnetic contactor for the charging circuit bypass) is not closed after power is supplied (200V 37kW or more, 400V 75kW or more).	PbF	
	DC fan lock (*)	Activated if the DC fan stops (200V 45kW or more, 400V 75kW or more).	dFR	H108
	Hardware error	Stops the inverter by detecting LSI errors on the PCB.	ЕгН	
	E-SX bus tact out-of-sinc error	Occurs if the E-SX tact cycle and inverter control cycle are out of synch.	Rr E	H108
	Toggle error	Occurs if the PLC monitors the 2-bit signal of toggle signal 1 [TGL1] and toggle signal 2 [TGL2], and does not receive the specified change pattern after the time set in H144 elapses.	Rc F	H107
	Functional safety card error *1	This is a protective function for the functional safety card. Refer to the functional safety card instruction manual for details. Functional Safety Card Instruction Manual INR-SI47-1541	5 iF 5rF	

 $^{^{\}star}1:$ Supported when the ROM version is H1/2 0020 or later, and the SER.No. product version is BC or later.

^{*)} The stack type is not supported.

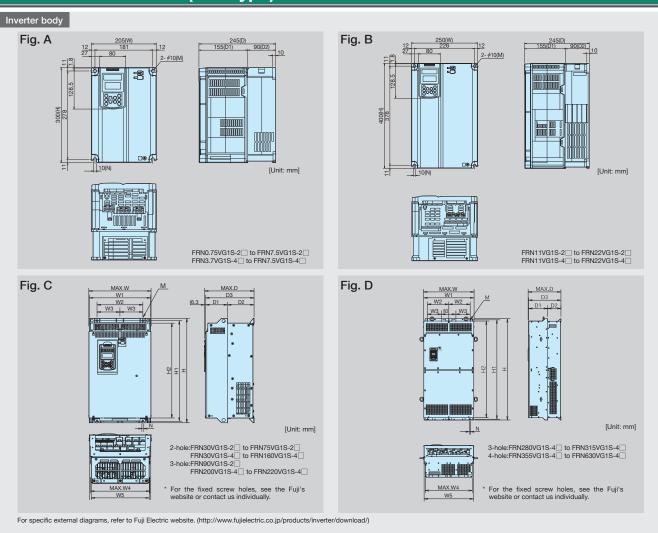
Category	Item	Specifications	Displays	Relevant function codes
Protective Functions	Minor fault (warning)	If an alarm or warning registered as a minor fault occurs, the minor fault indication $[L-RL]$ is displayed on the keypad. For a minor fault, the minor fault output (Y terminal) is output. However, alarm relay output (30ABC) is not output and the inverter continues operating. Items to be set (Can be selected individually): Motor overheat (BH4), motor overload (BL I-BL3), NTC thermistor disconnection (ar b), external alarm (BH2), RS-485 communications (Er5), option communications error (Er4), inverter link error (RrF), simulated fault (Err), DC fan lock detection (dFR), speed disagreement (Er3), E-SX error (RrF), Stalled st Start (LBC), motor overheat early warning, motor overload early warning, battery life, lifetime alarm, fin overheat early warning, overheating at heat sink, inverter overload early warning The cause of each minor fault can be checked on the keypad.	L-AL	H106 to H111
	Surge protection	Protects the inverter from surge voltage coming from the power supply using the surge absorber that is connected to the main circuit power supply terminal (unit type only: L1/R, L2/S, L3/T) and the control power supply terminal (Ro, To) circuit.		
	Main power off detection (*)	Monitors the inverter AC input power to judge if the AC input power (main power) is established or not. If not, whether the inverter is to be operated or not can be selected. (When the power is supplied via a PWM converter or DC bus connection, do not change the setting of function code H76 as no AC input exists.)		H76

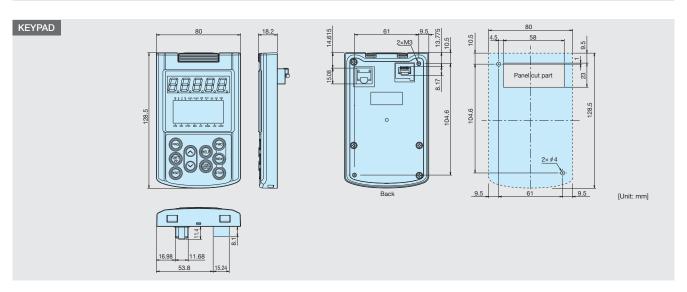
- All protective functions are reset automatically if the control power voltage decreases to where maintaining the operation of the inverter control circuit is impossible.
 The latest and last ten alarm codes and the latest and the last three alarm detailed data are stored.
- Stoppage due to a protective function can be reset from the RST key of the keypad or turning the circuit between the X terminal (assigned to RST) and the CM OFF and then ON. This action is invalid if the cause of an alarm is not found and resolved. If more than one alarm occurs at the same time, this action cannot be reset before resolving the causes of all alarms (the cause of an alarm that has not been cleared can be checked on the keypad).
- "30A/B/C" do not operate if interrupted by a minor fault.
- · Alarm information is not recorded if the main circuit intermediate DC voltage is equal to or less than the undervoltage level.
- *) Not available in the stack type

Fuses and microswitches for stack type

Three-phase 400V series

		MD specification			LD specification	
Inverter type	Nominal applied motor capacity [kW]	Fuse type	Q'ty	Nominal applied motor capacity [kW]	Fuse type	Q'ty
FRN30SVG1S-4	30	170M3394-XA	_	37	170M3393-XA	1
FRN37SVG1S-4	37	1701VISS94-AA	'	45	170M3394-XA	1
FRN45SVG1S-4	45	170M3395-XA	-1	55	170M3395-XA	1
FRN55SVG1S-4	55	1701013393-AA	'	75	170M3396-XA	1
FRN75SVG1S-4□	75	170M3396-XA	1	90	170M3448-XA	- 1
FRN90SVG1S-4	90	170M3448-XA	1	110	1701VI3440-AA	'
FRN110SVG1S-4□	110	1701VI3440-AA	'	132	170M4445-XA	1
FRN132SVG1S-4□	132	170M4445-XA	1	160	170M5446-XA	1
FRN160SVG1S-4□	160	170M5446-XA	1	200	170M6546-XA	4
FRN200SVG1S-4	200	170M6546-XA	-1	220	1701VI0040-AA	'
FRN220SVG1S-4□	220	1701010040-AA	'	250	170M6547-XA	1
FRN250SVG1S-4□	250	170M6547-XA	1	280	170M6548-XA	1
FRN280SVG1S-4□	280	170M6548-XA	1	315	170M6500-XA	1
FRN315SVG1S-4□	315	170M6500-XA	1	355	170IVIOSOU-AA	'
FRN630BVG1S-4□	630	170M7532	3	710	170M7633	3
FRN710BVG1S-4	710	170M7633	3	800	1701017033	3
FRN800BVG1S-4□	800	1701017033	3	1000	170M7595	3

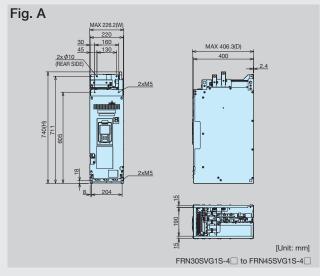

Three-phase 690V series

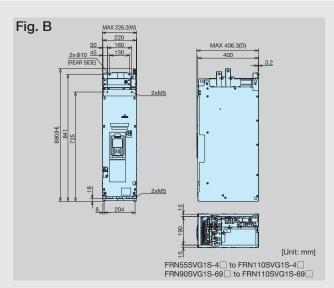

Three phase soot ser	100					
		MD specification			LD specification	
Inverter type	Nominal applied motor capacity [kW]	Fuse type	Q'ty	Nominal applied motor capacity [kW]	Fuse type	Q'ty
FRN90SVG1S-69□	90			110		
FRN110SVG1S-69□	110	170M3448-XA	2	132	170M3448-XA	2
FRN132SVG1S-69□	132	1701VI3440-AA		160		
FRN160SVG1S-69□	160			200	170M4445-XA	2
FRN200SVG1S-69□	200	170M4445-XA	2	250		
FRN250SVG1S-69□	250			280	170M6546-XA	2
FRN280SVG1S-69□	280	170M6546-XA	2	315	1701VI0340-AA	
FRN315SVG1S-69□	315			355		
FRN355SVG1S-69□	355			400	170M6E47 VA	2
FRN400SVG1S-69□	400	170M6547-XA	2	450	170M6547-XA	2
FRN450SVG1S-69	450					

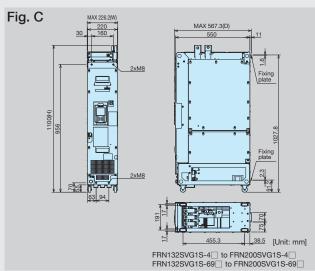
^{*} Fuses and microswitches are manufactured by Cooper Bussmann, but can also be ordered from Fuji.

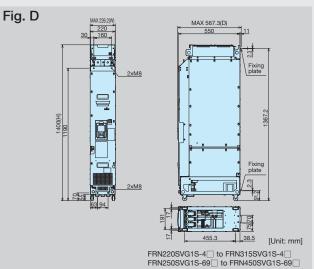
External Dimensions

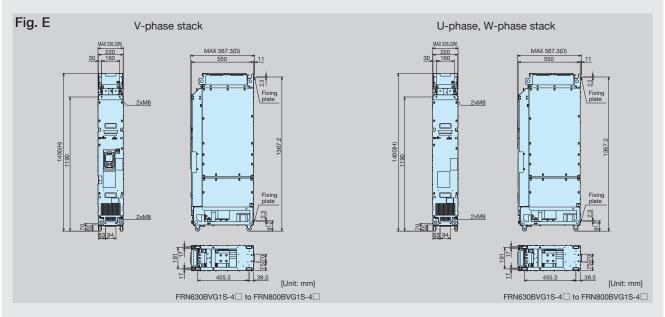
External Dimensions (Unit type)


[Unit: mm]


		_						.6	xternal	dimon	sions —					ĮU	lnit: mm
Series	Inverter type	Fig							xternar	dimens	Sions						
Selles	inverter type	' '9	W	W1	W2	W3	W4	W5	Н	H1	H2	D	D1	D2	D3	М	N
	FRN0.75VG1S-2	Α															
	FRN1.5VG1S-2	Α															
	FRN2.2VG1S-2	Α	205						300								
	FRN3.7VG1S-2	Α	205						300								
	FRN5.5VG1S-2	Α		_	_		_			_	_	245	155	90			
	FRN7.5VG1S-2	Α		_	_		_	_		_	-	245	155	90	-		
	FRN11VG1S-2□	В															
3-phase	FRN15VG1S-2	В	250			_			400							2X φ10	10
200V	FRN18.5VG1S-2	В	250			_			400								
	FRN22VG1S-2	В]														
	FRN30VG1S-2	С	326.2	320	240		310.2	304	550	530	500	261.3		140	255]	
	FRN37VG1S-2	С							615	595	565		115]	
	FRN45VG1S-2	С	361.2	355	275		345.2	339	740		690	276.3	115	155	270		
	FRN55VG1S-2	С							740	720	090						
	FRN75VG1S-2	С	535.8	530	430		506.4	500.6	750		688.7	291.3	145	140	285	2X Φ15	15
	FRN90VG1S-2	С	686.4	680	-	290	656.4	650.6	880	850	819.5	366.3	180	180	360	3X Φ15	13
	FRN3.7VG1S-4	Α															
	FRN5.5VG1S-4□	Α	205	<u>-</u>					300								
	FRN7.5VG1S-4□	Α	1														
	FRN11VG1S-4□	В	250		-		-	-		-	-	245	155	90	-		
	FRN15VG1S-4□	В							400								
	FRN18.5VG1S-4	В	250						400							07.410	10
	FRN22VG1S-4	В	1													2X φ10	10
	FRN30VG1S-4	С	326.2	320	240	_	310.2	304	550	530	500	261.3		140	255]	
	FRN37VG1S-4	С	326.2	320	240	-	310.2	304	550	530	500	201.3		140	200		
	FRN45VG1S-4	С]			615	595	565		115			1	
	FRN55VG1S-4	С	361.2	355	275		345.2	339	675	655	625	276.3		155	270		
3-phase	FRN75VG1S-4□	С]							720	690]					
400V	FRN90VG1S-4	С							740	710	678.7	321.3	135		315		
	FRN110VG1S-4	С	536.4	530	430		506.4	500.6		710	0/8./	321.3	133		313	2X φ15	
	FRN132VG1S-4□	С	330.4	330	430		300.4	300.6								2λΨ15	
	FRN160VG1S-4□	С							1000	970	939.5	366.3	180		360		
	FRN200VG1S-4	С			_	290	656.4	650.6	1000	910	303.0	300.3	100	180	300		
	FRN220VG1S-4	С	686.4	680		290	050.4	0.00						100		3X φ15	15
	FRN280VG1S-4	D	000.4	000	290	_	6EO	653				445.5				3λΨ15	10
	FRN315VG1S-4	D			290		659	000	3 1400	1370	1330	445.5	260		440		
	FRN355VG1S-4	D	886.4			260	950.1	052	1400	1370	1330	446.3	200		440		
	FRN400VG1S-4	D	880.4			200	859.1	0.1 853	53			440.3				4X φ15	
	FRN500VG1S-4	D	1006			300	072	966	1550	1520	1480	505.9	313.2	186.8	500	4ΛΨ15	
	FRN630VG1S-4	D	1006			300	972	900	1550	1520	1400	305.9	313.2	100.8	300		


^{*} Refer to the inverter type descriptions on P20 for details of the content indicated by ...


External Dimensions


External Dimensions (Stack type)

External Dimensions / Names and Functions of the Keypad

				External dimensions	[Unit: mm]
Series	Inverter type	Fig			
			W	Н	D
	FRN30SVG1S-4	А			
	FRN37SVG1S-4□	А	226.2	740	406.3
	FRN45SVG1S-4□	A			
	FRN55SVG1S-4□	В			
	FRN75SVG1S-4□	В	226.2	880	406.3
	FRN90SVG1S-4	В	220.2	880	400.3
	FRN110SVG1S-4	В			
0	FRN132SVG1S-4	С			
3-phase 400V	FRN160SVG1S-4	С	226.2	1100	567.3
400 V	FRN200SVG1S-4	С			
	FRN220SVG1S-4	D			
	FRN250SVG1S-4	D	226.2	1400	567.3
	FRN280SVG1S-4	D	220.2	1400	307.3
	FRN315SVG1S-4	D			
	FRN630BVG1S-4□(*1)	E			
	FRN710BVG1S-4□(*1)	E	226.2	1400	567.3
	FRN800BVG1S-4□(*1)	E			
	FRN90SVG1S-69	В	226.2	880	406.3
	FRN110SVG1S-69□	В	220.2	880	400.3
	FRN132SVG1S-69□	С			
	FRN160SVG1S-69□	С	226.2	1100	567.3
0 =6===	FRN200SVG1S-69□	С			
3-phase 690V	FRN250SVG1S-69	D			
0001	FRN280SVG1S-69	D			
	FRN315SVG1S-69□	D	226.2	1400	567.3
	FRN355SVG1S-69	D		1400	307.3
	FRN400SVG1S-69□	D			
	FRN450SVG1S-69	D			

Names and Functions of the Keypad

Up/Down keys

Operation mode:

Increases or decreases the speed.

Program mode:

Changes the function codes and specified data values.

Program key

Switches the display to the menu screen or the initial screens for operation and alarm modes.

Shift key (column shift)

Used to move the cursor horizontally in order to change data, and to jump to other function blocks (when pressed together with the UP/DOWN keys).

Reset key

Program mode:

Cancels the current input data and changes the screen. Trip mode:

Releases a trip.

Function/Data select key

Used to switch the displayed value on the LED monitor, input the speed setting and store function code data.

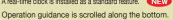
Unit indication

Displays the units for the information that appears on the LED monitor.

Stop key

Stops motor operation.

LED monitor


Displays the setting frequency, output current, output voltage, motor speed, and line speed. Trip mode:

Displays the cause of a trip.

LCD monitor

Displays different information ranging from operation status to function data.

A real-time clock is installed as a standard feature. NEW

Operation key

Starts motor operation.

RUN LED

Lit during operation by the FWD/REV signal or by operation commands via communications.

HELP key

Displays guidance screens including the key operation guidance for each LCD monitor display.

^{*1)} One inverter set consists of three stacks. The keypad comes with the V phase only.
* Refer to the inverter type descriptions on P20 for details of the content indicated by \square .

Dedicated motor specifications (Induction motor with sensor)

3-phase 200V series standard specifications

Item		Speci	fications	6														
Dedicated motor	rated output [kW]	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	
Applicable mo	tor type (MVK_)	8095A	8097A	8107A	8115A	8133A	8135A	8165A	8167A	8184A	8185A	8187A	8207A	8208A	9224A	9254A	9256A	
Moment of inertia	of rotor J [kg•m²]	0.009	0.009	0.009	0.016	0.030	0.037	0.085	0.11	0.21	0.23	0.34	0.41	0.47	0.53	0.88	1.03	
Rotor GD [kgf-	•m²]	0.036	0.036	0.036	0.065	0.12	0.15	0.34	0.47	0.83	0.92	1.34	1.65	1.87	2.12	3.52	4.12	
Base speed/Ma	ax. speed [r/min]	1500/3	500/3600 1500/3000												1500/2400 1500			
Vibration		V10 or	/10 or less												V15 or			
	Voltage [V], Frequency [Hz]	-	- 200 to 210V/50Hz,200 to 230/60Hz										200V/50H	Hz, 200,22	0V/60Hz			
	Number of phases/poles	-	Single	phase, 4	ŀΡ			3-phas	e, 4P									
Cooling fan*	Input power [W]	-	40/50					90/120		150/21	0				80/120	270/39	0	
	Current [A]	-	0.29/0.	27 to 0.0	31			0.49/ 0.44 to	0.48	0.75/0.	77 to 0.8	3			0.76/ 0.8.0.8	1.9/2.0	,2.0	
Approx.weight	t [kg]	28	29	32	46	63	73	111	133	190	197	235	280	296	380	510	570	

^{*} Only the MVK8095A (0.75 kW) is a self-cooled type.

3-phase 400V series standard specifications

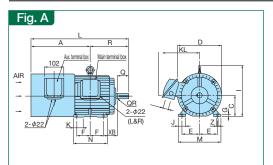
Item		Spec	ificatio	ns															
Dedicated motor	rated output [kW]	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220
Applicable mo	tor type (MVK_)	8115A	8133A	8135A	8165A	8167A	8184A	8185A	8187A	8207A	8208A	9224A	9254A	9256A	9284A	9286A	528KA	528LA	531FA
Moment of inertia	of rotor J [kg•m²]	0.016	0.030	0.037	0.085	0.11	0.21	0.23	0.34	0.41	0.47	0.53	0.88	1.03	1.54	1.77	1.72	1.83	2.33
Rotor GD [kgf	·m²]	0.065	0.12	0.15	0.34	0.47	0.83	0.92	1.34	1.65	1.87	2.12	3.52	4.12	6.16	7.08	6.88	7.32	9.32
Base speed/Ma	x. speed [r/min]	1500/3	3600	•				•	1500/3	3000		1500/2	2400	1500/2	2000				
Vibration		less						•			V15 or	less							
	Voltage [V], Frequency [Hz] 200 to 230V/60H						400 to 420V/50Hz,400 to 440V/60Hz 400V/50Hz,400,440V/60Hz												
	Number of phases/poles	Single	phase,	4P	3-phas	se, 4P													
Cooling fan	Input power [W]				90/120 150/210							80/ 120 270/390				2200		3700	
	Current [A]	0.29/0	0.29/0.27 to 0.31					4.6/4.	3,4.1	7.8/ 7.1,7.6									
Approx.weight	pprox.weight [kg] 46 63					133	190	197	235	280	296	380	510	570	710	760	1270	1310	1630

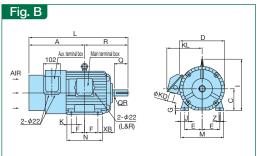
3-phase 400V series standard specifications

Item		Spec	ificatio	ons							
Dedicated moto	or rated output [kW]	250	280	300	315	355	400				
Applicable m	otor type (MVK_)	531GA	531HA	535GA	535GA	535HA	535JA				
Moment of iner	tia of rotor J [kg·m²]	2.52	2.76	5.99	5.99	6.53	7.18				
Rotor GD [ko	gf•m²]	10.08	11.04	23.96	23.96	26.12	28.72				
Base speed/M	fax. speed [r/min]	1500/2000									
Vibration		V15 or less									
	Voltage [V], Frequency [Hz]	400V/50Hz,400,440V/60Hz									
	Number of phases/poles	3-phase, 4P									
Cooling fan	Input power [W]	3700	١								
	Current [A]	7.8/7.1,7.6									
Approx.weig	ıht [kg]	1685	1745	2230	2230	2310	2420				

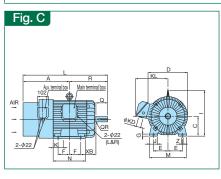
Common Specifications

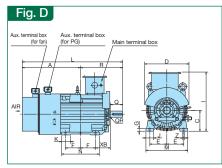
Item	Specifications							
Insulation class/Number of poles	Class F/4P							
	Main terminal box (lug type): 3 or 6 main circuit terminals, NTC thermister terminals							
Terminal design	= 2 pcs (MVK 8 series), 3 pcs (MVK 9 series, MVK 5 series, 1PC is a spare).							
Terminal design	Auxiliary terminal box (terminal block): Pulse encoder (P6P, P6M,PA, PB, SS),							
	Cooling fan (FU, FV, FW)							
Mounting method	Legs mounted (IMB3) NOTE: Contact FUJI for other methods.							
	IP44, Totally enclosed forced-ventilation system with cooling fan motor.							
Degree of protection, Cooling method	A cooling fan blows air over the motor toward the drive-end.							
	* Only the MVK8095A (0.75 kW) is a self-cooled type.							
Installation location	Indoor, altitude 1000m or less.							
Ambient temperature, humidity	-10 to +40°C, 90%RH or less (no condensation)							
Color	Munsell N5							
Standard conformity	MVK8 series: JEM1466 or JEC-2137-2000,							
Standard Comornity	MVK9 and MVK5 series: JEC-2137-2000							
Standard built-in part	Pulse encoder (1024P/R, DC+5V, A ,B ,Z, U, V, W line driver output),							
Standard Built-III part	NTC thermistor 1 pc (2 pcs for 110kW or more), cooling fan							

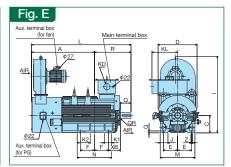

Note 1) For motors applicable with 55 kW or more, the torque is accurate to ±5%.If you need more accuracy, contact Fuji.


Note 2) If you need a motor other than the dedicated motor with 4 poles and base speed of 1500 r/min, contact Fuji Electric.

Note 3) An optional holding break (outline drawing 112 or higher) can be manufactured.


External dimensions of dedicated motors (Induction motor with sensor)


MVK



ш	n	it٠	mı

Motor rated	_	_									Din	nensio	ons										s	haft ex	tensic	on		Approx.
output [kW]	Туре	Fig	А	С	D	Е	F	G	1	J	К	K1	K2	KD	KL	L	М	N	R	ХВ	z	Q	QR	s	Т	U	w	weight [kg]
0.75	MVK8095A		201.5		204											370												28
1.5	MVK8097A		277.5	90		70	62.5	10	195	35.5	35.5				189	446	170	150	168.5	56	10	50		24j6	_			29
2.2	MVK8107A	Α	292	100	203	80		12.5	238	40	40			27	190	485	195	170	193	63					7	4	8	32
3.7	MVK8115A		299	112	236	95	70	14	270	40					205	499	224	175	200	70	1.	60	0.5	28j6				46
5.5	MVK8133A	В	309	100	070	400				45	50			0.4		548	050	180	239		12			001.0			40	63
7.5	MVK8135A		328	132	273	108	89	17	311	45				34	223	586	250	212	258	89		80		38k6	0	_	10	73
11	MVK8165A		400	100	004	407	105	10	070		-00				070	723	000	250	323	100					8	5		111
15	MVK8167A		422	160	321	127	127	18	376	50	63			40	272	767	300	300	345	108			1	42k6			12	133
18.5	MVK8184A	А	435				100 5							48		700.5		000	051.5		14.5	110		401.0	9		14	190
22	MVK8185A		435	180	376	139.5	120.5	20	428	75	75	-	-		305	786.5	350	292	351.5	121			1.5	48k6	9	5.5	14	197
30	MVK8187A		454				139.5							60		824.5		330	370.5					55m6	10	6	16	235
37	MVK8207A		400	200	411	150	152.5		466		0.				364	915.5	390	200	425.5	100				606				280
45	MVK8208A	С	490	200	411	159	152.5	25	466	80	85				304	915.5	390	360	423.3	133	18.5			60m6	11	7	18	296
55	MVK9224A		723	225	445	178	143		515		95				391	1155	436	366	432	149		140		65m6				380
75	MVK9254A		693.5	250	545	203	155.5	30	743					80	106	1157	506	411	463.5	168			2	75m6	12	7.5	20	510
90	MVK9256A	D	711.5	230	343	200	174.5	30	740	100	120				100	1194	300	449	483.5	100				7 31110	12	7.5	20	570
110	MVK9284A		764		605		184	35	798	100	120				203	1308	557	468	544		24							710
132	MVK9286A		789.5	280		228.5	209.5		730						200	1359	337	519	569.5	190	24			85m6			22	760
160	MVK528JA		1015.5	200	628		228.5	30	1234	125		120	210			1604	560	557	588.5	190			1	001110			22	1230
200	MVK528LA		1010.0		020		220.0	00	1204	120		120	210			1004	300	337	300.3			170			14	9		1350
220	MVK531FA																											1690
250	MVK531GA		1073	315	689	254	254		1425	150		140	240			1713	630	648	640	216				95m6			25	1750
280	MVK531HA	Ε									-			102	413													1820
300	MVK535GA							36													28		2					2230
315	WWW.coodart		1111	355	778	305	355		1510	160		180	330			1956	730	890	845	280		210		100m6	16	10	28	
355	MVK535HA			300	1,13	300	300		.010	100		100				.000	700			200		2.0					20	2310
400	MVK535JA																											2420

Note 1) MVK8095A (0.75kW) is a natural cooling type motor (cooling system: IC410). Note 2) MVK8095A (0.75kW) has the cable lead-in hole of ϕ 22 (in 1 place). Note 3) MVK9224A (55kW) has an aux. terminal box (for fan) as a supplement for Fig. C. Note 4) Allowable tolerance of dimension: Height of rotary shaft C \leq 250 mm ······ $_{0.5}^{0}$ mm, C > 250mm ····· $_{1.0}^{0}$ mm

Dedicated motor Specifications (Synchronous motor with sensor)

3-phase 200V series standard specification

Item		Specifica	ations												
Dedicated motor	rated output [kW]	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90		
Dedicated mot	tor type (GNF_)	2114A	2115A	2117A	2118A	2136A	2137A	2139A	2165A	2167A	2185A	2187A	2207A		
Moment of inerti	a of rotor [kg·m²]	0.018	0.021	0.027	0.036	0.065	0.070	0.090	0.153	0.191	0.350	0.467	0.805		
Rotor GD ² [kgf	·m²]	0.072	0.084	0.107	0.143	0.259	0.281	0.360	0.610	0.763	1.401	1.868	3.220		
Base speed/Ma	x. speed [r/min]	1500/200	0												
Rated current	[A]	20/20	29/29	42/42	57/57	71/70	82/81	113/108	144/144	165/165	200/200	270/270	316/316		
Vibration		V10 or les	V10 or less												
	Voltage [V], frequency [Hz]	200 to 24	0,50/60						200 to 21	0/50,200 to	0 230/60				
Cooling fan	Number of phases/poles	3-phase,	2P						3-phase,	4P					
Cooling lan	Input power [W]	38 to 44/5	56 to 58			54 to 58/7	70 to 78		90/120		150/210				
	Current [A]	0.13 to 0.16/0.18 to 0.16				0.18 to 0.	18/0.22 to	0.21	0.49/0.44	to 0.48	0.75/0.77	to 0.8			
Approx.weight	[kg]	51	55	69	78	100	106	127	170	192	247	325	420		

3-phase 400V series standard specification

Item Specifications																
Dedicated motor	rated output [kW]	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90			
Dedicated mo	tor type (GNF_)	2114A	2115A	2117A	2118A	2136A	2137A	2139A	2165A	2167A	2185A	2187A	2207A			
Moment of inerti	ia of rotor [kg·m²]	0.018	0.021	0.027	0.036	0.065	0.070	0.090	0.153	0.191	0.350	0.467	0.805			
Rotor GD ² [kgf	f-m²]	0.072	0.084	0.107	0.143	0.259	0.281	0.360	0.610	0.763	1.401	1.868	3.220			
Base speed/Ma	x. speed [r/min]	1500/200	1500/2000													
Rated current	[A]	10/10	15/15	21/21	29/29	36/35	41/41	57/54	72/72	83/83	100/100	135/135	158/158			
Vibration		V10 or less														
	Voltage [V], frequency [Hz]	200 to 24	200 to 240,50/60								400 to 420/50,400 to 440/60					
Cooling fan	Number of phases/poles	3-phase,	2P						3-phase,	4P						
Cooling lan	Input power [W]	38 to 44/5	56 to 58			54 to 58/	70 to 78		90/120		150/210					
	Current [A]	0.13 to 0.	16/0.18 to	0.16		0.18 to 0.18/0.22 to 0.21			0.27/0.24 to 0.25		0.38/0.39 to 0.4					
Approx.weight	51	55	69	78	100	106	127	170	192	247	325	420				

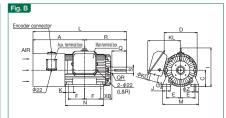
3-phase 400V series standard specification

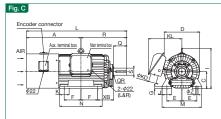
Item		Specifications											
Dedicated motor	rated output [kW]	110	132	160	200	220	250	280					
Dedicated mo	tor type (GNF_)	2224B	2224B 2226B 2254B		2256B	228FB	228GB	228HB					
Moment of inert	Moment of inertia of rotor [kg·m²]			1.96	2.22	2.79	3.12	3.47					
Rotor GD ² [k	Rotor GD² [kgf⋅m²]			7.84	8.88	11.2	12.5	13.9					
Base speed/Ma	ax. speed [r/min]	1500/2	1500/2000										
Rated currer	nt [A]	198	232	273	340	390	445	475					
Vibration		V10 or less											
	Voltage [V]	380,400,415/400,415,440,460											
	Number of phases/poles	3-phase, 4P											
Cooling fan	Power frequency	50/60											
	Input power [W])	270/39	0								
	O [A]	0.36,0.3	8,0.41/	0.95,0.	95,1/1,1	,1,1							
Current [A]		0.4,0.4,0	0.4,0.4										
Approx.weig	520	580	760	810	1000	1050	1100						

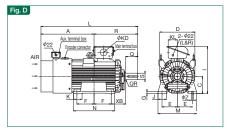
Common Specifications

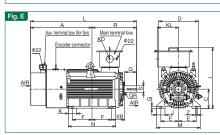
Specifications						
Class F/6P						
Main terminal box (lug type): 3 or 6 main circuit terminals						
NTC thermister terminals = 2 pcs(1 pc is a spare), 110kW or more						
Auxiliary terminal box (terminal block): cooling fan (FU, FV, FW)						
Pulse encoder (connector type), cooling fan (FU, FV, FW)						
CCW direction when viewed from operator						
Legs mounted (IMB3) (NOTE): Contact FUJI for other methods.						
150% 1min (*1)						
S1						
IP44, Totally enclosed forced-ventilation system with cooling fan motor.						
A cooling fan blows air over the motor toward the drive-end.						
Indoor, altitude 1000m or less.						
-10 to +40°C, 90% RH or less (no condensation)						
5.5kW to 90kW:80 dB(A) or less at 1m,110kW to 300kW:90 dB (A) or less at 1m						
6.86m/s² (0.7G)						
Munsell N1.2						
JEM 1487: 2005						
Pulse encoder (1024 P/R, DC + 5 V, A, B, Z, U, V, W line driver output),						
NTC thermistor 1 pc (2 pcs for 110 kW or more), cooling fan						

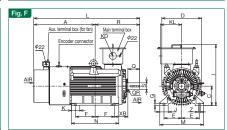
^{*1)} When using the HD Specification, 150% for 1 min due to motor restriction

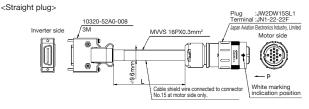

External dimensions of dedicated motors (Synchronous motor with sensor)

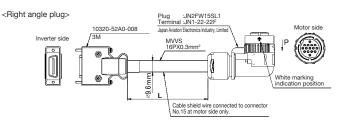

GNF2


Shaft extension






																											[Unit:	mm]
Motor rated output	_	Frame	_								Dir	nensic	ons										Shaft	exter	nsion			Approx.
output [kW]	Туре	no.	Fig	Α	С	D	Е	F	G	1	J	К	KD	KL	L	М	N	R	ХВ	z	Q	QR	s	Т	U	W	Υ	weight [kg]
5.5	GNF2114A	112Mh		335.5	112	235	95	70	14	270	40	50	34	200	555.5	224	175	220	70	12	80	0.5	38k6	8	5	10	M10X20	51
7.5	GNF2115A	1121/111		335.5	112	235	95	70	14	270	40	50	34	200	555.5	224	175	220	70	12	80	0.5	38k6	8	5	10	M10X20	55
11	GNF2117A	112Jh		380.5	112	235	95	100	18	270	55	50	48	235	698.5	228	238	318	108	14.5	110	1	42k6	8	5	12	M10X20	69
15	GNF2118A	112311	Α	380.5	112	235	95	100	18	270	55	50	48	235	698.5	228	238	318	108	14.5	110	1	42k6	8	5	12	M10X20	78
18.5	GNF2136A	132Lh		386	132	272	108	101.5	20	311	45	50	48	247	705.5	250	238	319.5	108	14.5	110	1.5	48k6	9	5.5	14	M10X20	100
22	GNF2137A	IJZLII		386	132	272	108	101.5	20	311	45	50	48	247	705.5	250	238	319.5	108	14.5	110	1.5	48k6	9	5.5	14	M10X20	106
30	GNF2139A	132Hh		424.5	132	272	108	140	20	311	45	50	60	247	782.5	250	313	358	108	14.5	110	1.5	55m6	10	6	16	M10X20	127
37	GNF2165A	160Lg		470.5	160	319	139.5	127	20	376	75	75	80	320	845.5	350	300	375	108	18.5	140	2	60m6	11	7	18	M12X25	170
45	GNF2167A	160Jg	В	501	160	319	139.5	157.5	20	376	75	75	80	320	906.5	350	370	405.5	108	18.5	140	2	60m6	11	7	18	M12X25	192
55	GNF2185A	180Lg		510	180	375	159	139.5	25	428	80	85	80	356	910.5	390	330	400.5	121	18.5	140	2	65m6	11	7	18	M12X25	247
75	GNF2187A	180Jg	С	576	180	375	159	177.5	25	428	100	100	80	356	1061.5	420	450	485.5	168	24	140	2	75m6	12	7.5	20	M12X25	325
90	GNF2207A	200Jg		618.5	200	410	178	200	25	549	100	100	80	107	1126.5	450	479	508	168	24	140	2	75m6	12	7.5	20	M12X25	420
110	GNF2224B	225Kg	D	711	225	446	203	200	28	628	100	120	80	142	1249	506	526	538	168	24	170	1	85m6	14	9	22	M20×35	520
132	GNF2226B	225Hg		761	225	446	203	250	28	628	100	120	80	142	1349	506	626	588	168	24	170	1	85m6	14	9	22	M20×35	580
160	GNF2254B	05011=	_	829	250	508	228.5	280	32	763	100	120	80	203	1469	557	677	640	190	24	170	1	95m6	14	9	25	M20×35	760
200	GNF2256B	250Hg	E	829	250	505	228.5	280	32	763	100	120	80	203	1469	557	677	640	190	24	170	1	95m6	14	9	25	M20×35	810
220	GNF228FB			881	280	570	254	280	35	878	120	120	102	303	1521	628	680	640	190	28	170	1	95m6	14	9	25	M20×35	1000
250	GNF228GB	280Jf	_	881	280	570	254	280	35	878	120	120	102	303	1521	628	680	640	190	28	170	1	95m6	14	9	25	M20×35	1050
280	GNF228HB		F	881	280	570	254	280	35	878	120	120	102	303	1521	628	680	640	190	28	170	1	95m6	14	9	25	M20×35	1100


Note 1) The models of 110kW or higher are designed to be coupled directly to the load. Contact Fuji in case of coupled to belt. Note 2) Allowable tolerance of dimension: Height of rotary shaft C ≤250mm......0.5mm, C > 250mm......0.5mm

Dedicated inverter connection cables

	Cable length	Motor side plug type							
	(L dimension)	Straight plug	Right angle plug						
Cable	5m	CB-VG1-PMPG-05S	CB-VG1-PMPG-05A						
model	15m	CB-VG1-PMPG-15S	CB-VG1-PMPG-15A						
	30m	CB-VG1-PMPG-30S	CB-VG1-PMPG-30A						
	50m	CB-VG1-PMPG-50S	CB-VG1-PMPG-50A						

Cable arrangement diagram

Wiring Diagram

Basic Wiring Diagram (unit type)

(Note1) Install a recommended molded-case circuit-breaker (MCCB) or an earth-leakage circuit-breaker (ELCB) with an overcurrent protection function in the primary circuit of the inverter to protect the wiring. At this time, ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.

(Note2) Install a magnetic contactor (MC) for each inverter to separate the inverter from the power supply, apart from the MCCB or ELCB, when necessary. Connect a surge absorber in parallel when installing a coil such as the MC or solenoid near the inverter.

(Note3) Connect this terminal to the power supply to retain relay aimm signal when the protection function is activated, or to keep the Keppad on even when the inverter main power supply is cut. The inverter can be operated without supplying power to this terminal.

(Note4) Normally this is not necessary to connect. Used when combining the unit such as high power factor PVM converter with power regenerative function, (RHC series) (200 V series: 37kW or higher, 400 V series: 75kW or higher, 400 V series: 75kW or higher).

(Note5) When connecting a DC reactor (DCR option), remove the jumper bar from across the inverter main circuit terminals [P1] and [P(+)]. DC reactor is provided as standard in case of VG1S-[] J (Japan) model for the following conditions: the capacity of the power transformer is S00 kW or more; or is ten times or more and the inverter rated capacity; or a load with thyristors is connected to the same power supply system.

(Note6) A braking transistor is built in the inverters with 55kW or less (200V series) and 60kW or less (400V series). It can be directly connected across \$P(+)DB.

Noted by A Maning it asists in so both in the invertee will John or less (2004 series) and John of less (2004 series) and John of less (2004 series) and John of 1804 less (Noted) when connecting a braking resistor to the inverter with a capacity of 75 kW or more (2004 series), or 200 kW or more (4000 series), be sure to use a braking unit (option). Connect the braking unit (option) across P(+) and N(-). The auxiliary terminals [1] and [2] have polarity. Connect them according to the diagram above.

(Note8) This is a terminal for grounding the motor. To suppress inverter noise, it is recommended to use this terminal for motor grounding.

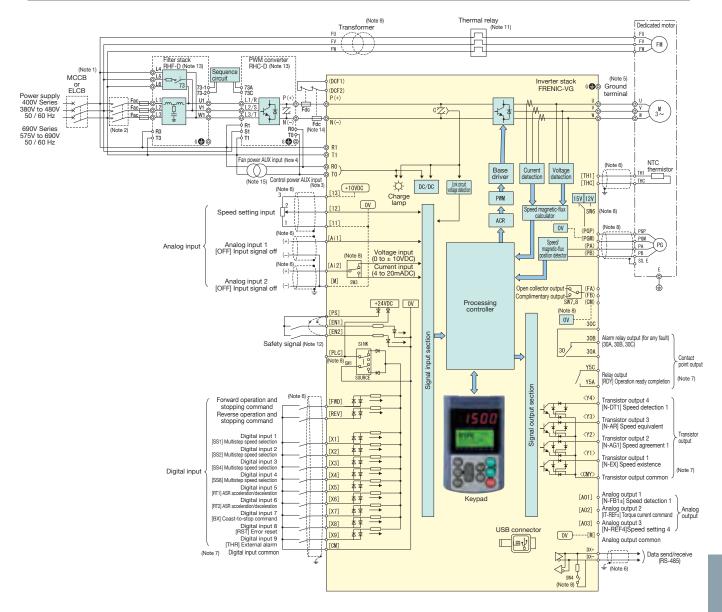
(Note8) \$\frac{1}{2}\tilde{\text{Use}}\tilde{\text{twisted}}\ or shelded cables for the control signals. The shield conductor normally should be grounded, however, if noise is significantly induced from external devices, it may be suppressed by connecting it to \$\overline{\text{W}}\] ([M]), [11], [THC]) or \$\overline{\text{W}}\] ([M]). Set apart from the main circuit wing as far as possible, and avoid installing it in the same conduit. It is recommended to separate the control signals from the main circuit wins more than 10cm. If crossed, arrange the control wires so that they become almost perpendicular to the main circuit wiring.

(Note10) The functions in clicated on terminals [X1] to [X9] (digital inputs), terminals [Y1] to [Y4] (transistor outputs), and terminal [Y5A/C] (contact output) are those assigned from factory default.

(Note11) This is a switch on the control PCB.

(Note13) The motor of 7.5 KW or less has a single-phase power supply fan, in that case connect terminals ELI and

(Note12) This is a switch on the control PCB.


(Note13) The motor of 7.5kW or less has a single-phase power supply fan. In that case connect terminals FU and FV. 400 V series motor of 7.5 kW or less has a cooling fan with a supply voltage of 200V / 50 Hz and 200 to 230 V / 60 Hz (single-phase). 400 V series motor with 11 kW or more has a cooling fan with a supply voltage of 400 to 420 V / 50 Hz and 400 to 440 V / 60 Hz (three phase). When the power supply voltage is other than the above, use a transformer to supply the cooling fan.

(Note14) The [W] ([M], [11], [THC]) and [W] ([CM], [PGM]) terminals are insulated on the inverter.

(Note14) Tonfirm that the auxiliary contact of thermal relay can trip the ine circuit breaker (MCCB) or the electromagnetic contactor (MC).

(Note16) A short-circuit conductor is connected between the safety function terminals [EN1] [EN2] and [PS] as the factory default. To use this safety function, remove the short-circuit conductor before connection.

Basic Wiring Diagram (stack type)

(Note 1) Install a recommended molded-case circuit-breaker (MCCB) or an earth-leakage circuit-breaker (ELCB) with an overcurrent protection function in the primary circuit of the inverter to protect the wiring. At this time, ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity. (Note 2) Provide an electromagnetic contactor (MC) recommended for each converter to shut off the converter from the power supply (in addition to the MCCB or ELCB). When the MC, solenoid, or other coil is installed near

the power supply (in addition to the MOCB or ELCB). When the MC, solenoid, or other coil is installed near the converter, a surge absorber should be connected in parallel with it.

(Note 3) Connect this terminal to the power supply to retain relay altarm signal when the protection function is activated, or to keep the Keypad on, even when the inverter main power supply is cut. The inverter can be operated without supplying power to this terminal.

(Note 4) Connect this when the inverter capacity is 90kW or more.

(Note 5) This is a terminal for grounding the motor. To suppress inverter noise, it is recommended to use this terminal for motor grounding.

(Note 6) [...] Use twisted or shielded cables for the control signals. The shield conductor normally should be grounded, however, if noise is significantly induced from external devices, it may be suppressed by connecting it to [00] (MI), [11], [11], [11]. Set apart from the main circuit wiring as far as possible, and avoid installing it in the same conduit. It is recommended to separate the control signals from the main circuit wires more than 10cm. If crossed, arrange the control wires so that they become almost perpendicular to the main circuit wiring.

(Note 7) The functions indicated on terminals [X1] to [X9] (digital inputs), terminals [X1] to [Y4] (transistor outputs), and terminal [Y5A/C] (contact output) are those assigned from factory default.

(Note 9) The power to the motor cooling fan is 400 to 420 V / 50 Hz or 400 to 440 / 60 Hz. If you use other voltages, it

must be adjusted by using a transformer.

(Note 10) The (w) [(M), [11], [THC]) and [w] [(CM], [PGM]) terminals are insulated on the inverter.

(Note 11) Confirm that auxiliary contact (manual recovery) of thermal relay can trip the line circuit breaker (MCCB) or electromagnetic contactor (MC)

(Note 12) A short-circuit conductor is connected between the safety function terminals [EN1] [EN2] and [PS] as the factory default. To use this safety function, remove the short-circuit conductor before connection.

(Note 13) Refer to the PWM converter and filter stack Instruction Manuals for details on PWM converter (RHC-D)

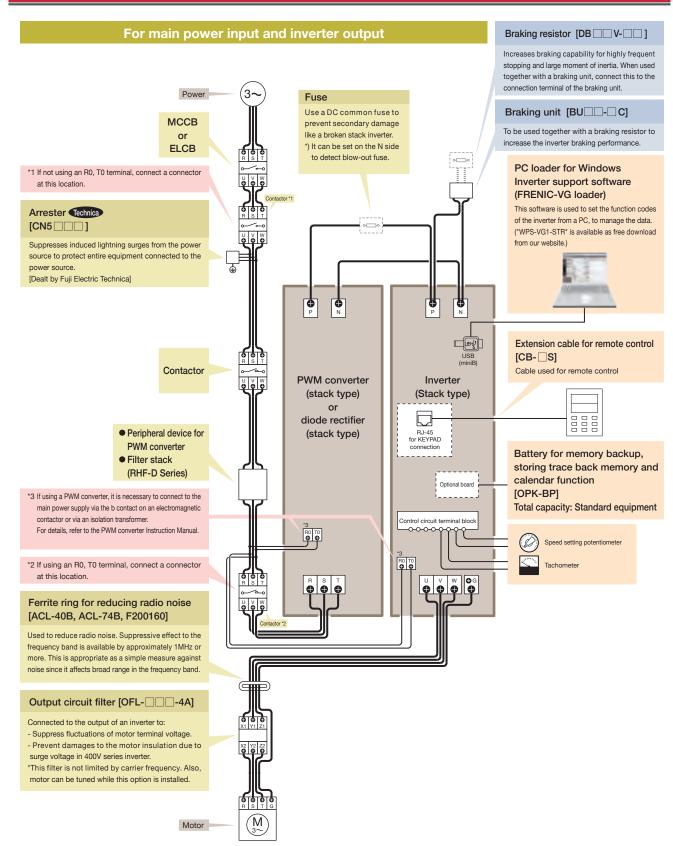
and filter stack (RHF-D) connection.

(Note 14) Always use a fuse (FdC). With the 400V Series, connect it to the P(+) side, and for the 690V series, connect it to both the P(+) side and N(-) side.

(Note 15) In order to isolate the circuit use an isolation transformer or B (NC) contacts of a magnetic contactor whose coil is connected on power supply side.

Option guides (Example of unit type)

For main power input and inverter output (3∼ Power Arrester Technica PC loader for Windows *1 If not using an R0, T0 terminal, connect a connector Inverter support software (FRENIC-VG loader) Suppresses induced lightning surges from MCCB This software is used to set the function codes the power source to protect entire equipment **EMC** compliance filter of the inverter from a PC, to manage the data. connected to the power source. ELCB [EFL- , FS , FN] ("WPS-VG1-STR" is available as free download [Dealt by Fuji Electric Technica] from our website.) Dedicated filter to comply with the European EMC Directive (Emission). Install the filter while referring to the details in the installation manual. Extension cable for remote control Power filter for input circuit [CB-□S] [RNF C - -] Cable used for remote control This filter can be used for the same purpose as the EMC compliance filter, but is not an EMC compliance. Battery for memory backup, *2 If using an R0, T0 terminal, connect a connector at this location. storing trace back memory and Optional board calendar function Filter capacitor for reducing radio noise Technica RJ-45 for KEYPAD [OPK-BP] [NFM M315KPD] 30kW or more:standard equipment, 22kW: optional Used to reduce radio noise. This is effective for Control circuit terminal block the AM radio frequency band. *Do not use it on the inverter output side Speed setting potentiometer [Made by Nippon Chemi-con, dealt by Fuji Electric Technica] Ferrite ring for reducing radio noise [ACL-40B, ACL-74B, F200160] Used to reduce radio noise. Suppressive effect to the frequency band is available by approximately 1MHz or more. This is appropriate as a simple measure against noise since it affects broad range in the frequency band. Power filter for output circuit Technica [RNF S - -] Braking unit This will become more effective in noise reduction if [BU . C] used together with the power filter for input circuit. To be used together with a braking resistor to increase the inverter braking performance. Output circuit filter [OFL- -4A] Connected to the output of an inverter to: Power regenerative PMW converter, RHC series ·.... · Suppress fluctuations of motor terminal voltage [RHC CC · Prevent damages to the motor insulation due to surge voltage in 400V series inverter. Used for suppressing power source harmonics of *This filter is not limited by carrier frequency. Also, motor inverters. It is also equipped with a power supply can be tuned while this option is installed. regenerative function to drastically increase braking capability and reduce energy consumption. * Use in combination with the RHC Series dedicated press reactor, resistor, and capacitor. Surge supperession unit [SSU ____TA-NS] Surge voltage is generated if the cable between an inverter and a motor is several ten meters long. This product suppresses the DC REACTOR [DCR __- __] surge voltage, preventing the motor from being damaged. (Can be used for motors of 75kW or lower.) [For power supply normalization] 1) Use if the power transformer capacity is 500kVA or more and exceeds Surge killer the inverter rated capacity by 10 times. 2) Use if the inverter and a thyristor converter are connected to the same Absorbs surge voltage coming from L-load of magnetic transformer contactor and solenoid valve to protect electronic *Check if the thyristor converter uses a commutation reactor. If not,an AC reactor must be connected to the power supply side. devices from malfunctioning. Braking resistor [DB . V- .] 3) Connect to prevent trips when trip occurs due to opening/closing of the Surge absorber Technica phase-advancing capacitor for the power supply lines. (Connect in parallel to the coil that is a generation source of surge.) Increases braking capability for highly frequent 4) Use if the voltage unbalance exceeds 2%. stopping and large moment of inertia. When [S2-A-O (for magnetic contactor and solenoid valve)] [For improving the input power-factor and reducing harmonics] used together with a braking unit, connect this [S1-B-O (for mini control relay and timer)] Used to reduce the input harmonic current (correcting power-factor) to the connection terminal of the braking unit. Surge killer for L-load (Connect to the power circuit that is a generation source of surge.) Peripheral and structure options [FSL-323 (for 3-phase)]


Attachment for external cooling

— 48 —

The attachment to install the heat sink part of the inverter outside the panel. [PBVG7-7.5 (for up to 7.5kW)] [PB-F1-30 (for 11 to 22kW)]

[[]FSL-123 (for single -phase)]

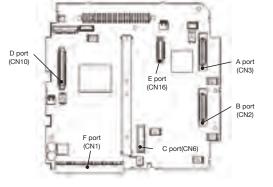
Option guides (Example of stack type)

^{*} The items indicated with **Technica** are dealt by Fuji Electric Technica.

Optional card

Category	Name	Туре	Switch with SW on the Pt board	Specificat	ions	Remarks
Analog card	Synchronized interface	OPC-VG1-SN	·	Synchronizing interface circu	its for dancer control	
	Aio extension card	OPC-VG1-AIO		Extension card of Ai 2 points	+ Ao 2 points	
Digital card	Di interface card	OPC-VG1-DI	OPC-VG1-DI (A)	16 bit Di of binary or 4-digit E	BCD + sign	
(8 bit)			OPC-VG1-DI (B)	For setting the speed, torque and the	torque current reference.	
	Dio extension card	OPC-VG1-DIO	OPC-VG1-DIO (A)	Extension of Di (4bits) and Do (8bits)	for function selection.	
				Dio option card for direct landing con	ntrol. Di x 16 bit + Do x10 bit	
			OPC-VG1-DIO (B)	UPAC exclusive use		
	PG interface expansion card	OPC-VG1-PG	OPC-VG1-PG (SD)	+ 5V line driver type, voltage	output PGs	
			OPC-VG1-PG (LD)	(A,B and Z-phase signals).		
			OPC-VG1-PG (PR)	Used for detecting motor spe-		
			OPC-VG1-PG (PD)	reference and position detecti	on.	
		OPC-VG1-PGo	OPC-VG1-PGo (SD)	Open collector type voltage of		
			OPC-VG1-PGo (LD)	(A,B and Z-phase signals).		
			OPC-VG1-PGo (PR)	Used for detecting motor spe-		
			OPC-VG1-PGo (PD)	reference and position detecti	on.	
		OPC-VG1-SPGT		ABS encoder with 17 bit high	resolution	
	PG card for synchronous motor drive	OPC-VG1-PMPG		+5V line driver type		
		OPC-VG1-PMPGo		Open collector type	(Max. 4bit)	
	T-Link interface card	OPC-VG1-TL		T-Link interface card		
	CC-Link interface card	OPC-VG1-CCL		CC-Link compliant card (Ver2		
	High-speed serial connections for UPAC	OPC-VG1-SIU		Use for UPAC communicatio	n system	coming soon
Digital card	SX bus communication card	OPC-VG1-SX		SX bus communication card		
(16 bit)	E-SX bus communication card	OPC-VG1-ESX		E-SX bus communication car		
	PROFINET-IRT	OPC-VG1-PNET		PROFINET-IRT communication	on card	
				Compatible only with special inv	erter type VG1S- PN	
	User Programmable Application Card			User programming card		
Fieldbus	PROFIBUS-DP	OPC-VG1-PDP		PROFIBUS-DP interface card	d	
interface card	DeviceNet	OPC-VG1-DEV		DeviceNet interface card		
Safety card	Functional safety card	OPC-VG1-SAFE		Safety standard compliant ca		
Control circuit terminal	Terminal block for high-speed serial communications	OPC-VG1-TBSI		Used for multiple-winding motor drive sys	tem, reactor connection system	
Loader	Inverter support loader	WPS-VG1-STR		For Windows. (Free version)		
		WPS-VG1-PCL		For Windows. (Paid version)		
Package software	Tension control software	WPS-VG1-TEN		For Windows.		
	Dancer control software	WPS-VG1-DAN		Supplied with inverter support		
	Position control software	WPS-VG1-POS				

Cable


Category	Name	Туре	Length (m)	Specifications
Cable	Extension cable for remote control	CB-5S	5m	Connection cable between an inverter and the KEYPAD panel
		CB-3S	3m	
		CB-1S	1m	
	Encoder cable for GNF2	CB-VG1-PMPG-05S	5m	Straight plug
		CB-VG1-PMPG-15S	15m	
		CB-VG1-PMPG-30S	30m	
		CB-VG1-PMPG-50S	50m	
		CB-VG1-PMPG-05A	5m	Angle plug
		CB-VG1-PMPG-15A	15m	
		CB-VG1-PMPG-30A	30m	
		CB-VG1-PMPG-50A	50m	
	Dedicated UPAC cable	CB-VG1-UPAC-3S	3m	Connection cable for OPC-VG1-UPAC and computer

Combination with built-in control option

CN	Port	Category	Pattern 1	Pattern 2	Pattern 3
3	Α	Digital card (for 8 bit bus), Analog card	1	1	1
2	В	Digital card (for 8 bit bus)	1	0	0
6	С	Field bus interface card	0	0	1
10	D	Digital card (for 16 bit bus)	1	1	0
16	E	Safety card	0	1	1
1	F	Control circuit terminal	1	1	1

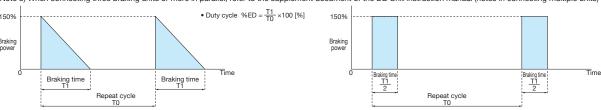
- (1) Certain optional communication cards (OPC-VG1-TL and OPC-VG1-CCL, etc.) cannot be installed at the same time. An operation procedure error (Er6) will occur if these cards are installed at the same time.
- (2) The usage of the OPC-VG1-DI, DIO, PG and PGo can be selected by setting the SW on the PCB. 2 cards of each of the types OPC-VG1-DI, DIO, PG and PGo can be installed, but if the SWs for selecting the usage mode are set to the same setting, an operation procedure error (Er6) is indicated.
- (3) If using OPC-VG1-PG for motor speed detection, input from terminals (PA, PB) on the main unit control PCB is disabled. $(4) The \ restrictions \ in \ the \ following \ table \ apply \ when \ installing \ the \ OPC-VG1-PG/PGo \ and \ OPC-VG1-PMPG/PMPGo.$

	VG1-PG/PGo(SD) VG1-PMPG/PMPGo	VG1-PG/PGo(LD)	VG1-PG/PGo(PR)	VG1-PG/PGo(PD)
VG1-PG/PGo(SD)	NG			
VG1-PMPG/PMPGo				
VG1-PG/PGo(LD)	OK	NG		
VG1-PG/PGo(PR)	OK	NG	NG	
VG1-PG/PGo(PD)	OK	NG	NG	NG

⁽⁵⁾ When you install OPC-VG1-PMPG, you should select terminals according to the control method. The terminals (PA, PB) on the control PC board of the main unit are enabled if vector control for induction motor with speed sensor is selected. The OPC-VG1-PMPG is enabled if vector control for synchronous motor with speed sensor is selected.

⁽⁶⁾ OPC-VG1-SPGT can only be installed in the B port.

Braking resistor, braking unit (max. 150% torque, 10% ED)

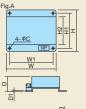

Power	Nominal applied motor	Inverter type	Braking uni		Braking	resistor			ntinuous bra que conver	_	Repetitive braking (100s or less cycle)	
supply voltage	[kW]	Unit type * (HD spec)	Туре	Q'ty	Туре	Ohmic value	Q'ty	Max. braking torque [%]	Braking time [s]	Discharging capability [kWs]	Duty cycle [%ED]	Average loss [kW]
	0.75	FRN0.75VG1S-2										
	1.5	FRN1.5VG1S-2			DB2.2V-21B	30Ω	1			16.5		0.165
	2.2	FRN2.2VG1S-2										
	3.7	FRN3.7VG1S-2			DB3.7V-21B	24Ω	1			27.75		0.2775
	5.5	FRN5.5VG1S-2			DB5.5V-21B	16Ω	1			41.25		0.4125
	7.5	FRN7.5VG1S-2			DB7.5V-21B	12Ω	1			56.25		0.5625
	11	FRN11VG1S-2	Duitt in uni		DB11V-21B	8Ω	1			82.5		0.825
3-phase	15	FRN15VG1S-2	Built-in uni	τ	DB15V-21B	6Ω	1	150%	10s	112.5	10%ED	1.125
200V	18.5	FRN18.5VG1S-2	-		DB18.5V-21B	4.5Ω	1	130%	105	138.75	107020	1.3875
	22	FRN22VG1S-2			DB22V-21B	4Ω	1]		165		1.65
	30	FRN30VG1S-2	-		DB30V-21B	2.5Ω	1			225		2.25
	37	FRN37VG1S-2	-		DB37V-21B	2.25Ω	1			277.5		2.775
	45	FRN45VG1S-2	-		DB45V-21B	2Ω	1	-		337.5		3.375
	55	FRN55VG1S-2	-		DB55V-21C	1.6Ω	1			412.5		4.125
	75	FRN75VG1S-2	BU55-2C	2	DB75V-21C	2.4Ω/2	1			562.5		5.625
	90	FRN90VG1S-2	BU90-2C	2	DB90V-21C	2Ω/2	1	-		675		6.75
	3.7	FRN3.7VG1S-4	2000 20		DB3.7V-41B	96Ω	1			27.75		0.2775
	5.5	FRN5.5VG1S-4	-		DB5.5V-41B	64Ω	1	-		41.25		0.4125
	7.5	FRN7.5VG1S-4	-		DB7.5V-41B	48Ω	1	1		56.25		0.5625
	11	FRN11VG1S-4	_		DB11V-41B	32Ω	1	-		82.5		0.825
	15	FRN15VG1S-4	_		DB15V-41B	24Ω	1			112.5		1.125
	18.5	FRN18.5VG1S-4	_		DB18.5V-41B	18Ω	1			138.75		1.3875
	22	FRN22VG1S-4	_		DB18.5V-41B	16Ω	1			165		1.65
	30	FRN30VG1S-4	_		DB30V-41B	10Ω	1			225		2.25
	37	FRN37VG1S-4	Built-in uni	t	DB37V-41B	9Ω	1			277.5		2.775
	45	FRN45VG1S-4	-		DB45V-41B	8Ω	1			337.5		3.375
	55		-					-				4.125
		FRN55VG1S-4	-		DB55V-41C	6.5Ω	1	_		412.5		-
	75	FRN75VG1S-4	_		DB75V-41C	4.7Ω	1	1500/	40	562.5	100/50	5.625
3-phase	90	FRN90VG1S-4	_		DB90V-41C	3.9Ω	1	150%	10s	675	10%ED	6.75
400V	110	FRN110VG1S-4	_		DB110V-41C	3.2Ω	1	-		825		8.25
	132	FRN132VG1S-4	_		DB132V-41C	2.6Ω	1	-		990		9.9
	160	FRN160VG1S-4			DB160V-41C	2.2Ω	1	-		1200		12.0
	200	FRN200VG1S-4	BU220-4C	2	DB200V-41C	3.5Ω/2	1			1500		15.0
	220	FRN220VG1S-4			DB220V-41C	3.2Ω/2	1	_		1650		16.5
	250		-	-				-				
	280	FRN280VG1S-4	BU220-4C	2	DB160V-41C	2.2Ω/2	2	-		2100		21.0
	315	FRN315VG1S-4			DB160V-41C	2.2Ω/2	2			2363		23.6
	355	FRN355VG1S-4		3	DB132V-41C	2.6Ω/3	3			2663		26.6
	400	FRN400VG1S-4	BU220-4C		DB132V-41C	2.6Ω/3	3			3000		30.0
	500	FRN500VG1S-4		4	DB132V-41C	2.6Ω/4	4			3750		37.5
	630	FRN630VG1S-4		4	DB160V-41C	2.2Ω/4	4			4725		47.3
	710	-	-	-								
	800	-	-	_								

^{*} For the unit type (MD / LD) specification and stack type (LD) specification, refer to the User Manual. (Unit Type, Function Code Edition: 24A7-—-0019, Stack Type Edition: 24A7-—-0018)

(Note 1) The duty cycle [%ED] are calculated as the 150% torque braking used for deceleration as described below.

(Note 2) Two braking resistors are required for each of DB160V-41C, DB200V-41C, or DB220V-41C.

(Note 3) When connecting three braking units or more in parallel, refer to the supplement document of the DB Unit instruction manual (notes in connecting multiple units) INR-HF51614.



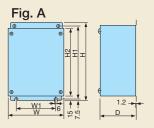
[Selection procedure] All three conditions listed below must be satisfied simultaneously.

- 1 "The maximum braking torque" does not exceed the value shown on the table.
- 2 The energy discharged in the resistor for each braking (the area of the triangle shown in the above figure, area of rectangle in drawing on right) does not exceed "the discharging capability [kWs]" on the table.
- 3 The average loss (energy discharged in the resistor divided by the braking interval) does not exceed "the average loss [kW]" shown on the table.

Braking resistor (max.150% torque, 10%ED Spec.)

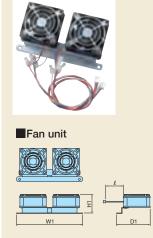
200V Series

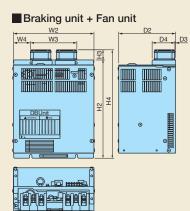
T	F:			Di	mensi	ons [m	m]			Approx.
Type	Fig	W	W1	Н	H1	H2	D	D1	С	weight [kg]
DB2.2V-21B		330	298	242	210	165	140	1.6	8	4
DB3.7V-21B		400	368	280	248	203	140	1.6	8	5
DB5.5V-21B		400	368	280	248	203	140	1.6	8	5
DB7.5V-21B		400	368	480	448	377	140	1.6	10	6
DB11V-21B		400	368	480	448	377	140	1.6	10	7
DB15V-21B	Α	400	368	660	628	557	140	1.6	10	10
DB18.5V-21B		400	368	660	628	557	140	1.6	10	10
DB22V-21B		400	368	660	628	557	240	1.6	10	13
DB30V-21B		400	368	660	628	557	240	1.6	10	18
DB37V-21B		405	368	750	718	647	240	1.6	10	22
DB45V-21B		405	368	750	718	647	340	1.6	10	26
DB55V-21C		450	420	440	430	250	283	-	12	35
DB75V-21C	В	600	570	440	430	250	283	-	12	33
DB90V-21C		700	670	440	430	250	283	_	12	43


400V Series

Toma	F:-			Di	mensi	ons [m	m]			Approx.
Туре	Fig	W	W1	Н	H1	H2	D	D1	С	weight [kg]
DB3.7V-41B		420	388	280	248	203	140	1.6	8	5
DB5.5V-41B		420	388	480	448	377	140	1.6	10	7
DB7.5V-41B		420	388	480	448	377	140	1.6	10	7
DB11V-41B		420	388	480	448	377	140	1.6	10	8
DB15V-41B	١.	420	388	660	628	557	140	1.6	10	11
DB18.5V-41B	Α	420	388	660	628	557	140	1.6	10	11
DB22V-41B		420	388	660	628	557	240	1.6	10	14
DB30V-41B		420	388	660	628	557	240	1.6	10	19
DB37V-41B		425	388	750	718	647	240	1.6	10	21
DB45V-41B		425	388	750	718	647	340	1.6	10	26
DB55V-41C		550	520	440	430	250	283	_	12	26
DB75V-41C		550	520	440	430	250	283	-	12	30
DB90V-41C		650	620	440	430	250	283	-	12	41
DB110V-41C	В	750	720	440	430	250	283	-	12	57
DB132V-41C	В	750	720	440	430	250	283	_	12	43
*DB160V-41C		600	570	440	430	250	283	_	12	37(×2)
*DB200V-41C		725	695	440	430	250	283	_	12	50(×2)
*DB220V-41C		725	695	440	430	250	283	_	12	51(×2)

^{*} For DB160V-41C, DB200V-41C, and DB220V-41C, a pair of resistors of the same type is used. Be sure to secure the space for installation. A pair of resistors is shipped for the order of one unit.


Braking unit (BU)

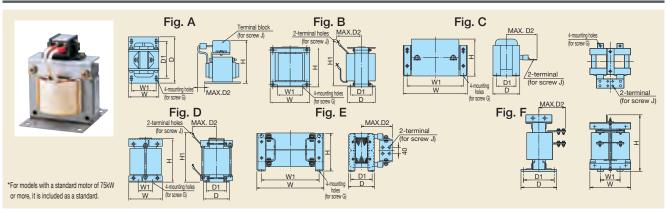


V-14	T	Fig		Di	mensi	ons [m	m]		Approx. weight
Voltage	Туре	Fig	W	W1	Н	H1	H2	D	[kg]
3-phase	BU55-2C	Α	230	130	240	225	210	160	6
200V	BU90-2C	Α	250	150	370	355	340	100	9
	BU37-4C	Α	150	100	280	265	250		4
	BU55-4C	Α	230	130	280	265	250		5.5
3-phase 400V	BU90-4C	Α	230	130	280	265	250	160	5.5
4000	BU132-4C	Α	250	150	370	355	340		9
	BU220-4C	Α	250	150	450	435	420		13

Fan unit for braking unit (BU-F)

The duty cycle [%ED] of the model with an external braking unit is increased from 10% ED to 30% ED by using this option.

[Fan unit]


T		Dir	nensi	ons [mm]
Туре	W1	H1	D1	ℓ (Fan power supply cable)
BU-F	149	44	76	320

[Braking unit + Fan unit]

Voltage	Time			Di	mens	sions	[mm]			
voitage	Туре	W2	W3	W4	H2	НЗ	H4	D2	D3	D4
3-phase	BU55-2C+BU-F	230	135	47.5	240	30	270	160	1.2	64
200V	BU90-2C+BU-F	250	133	57.5	370	30	400	160	1.2	04
	BU37-4C+BU-F	150		7.5	280	30 310 30 30 310 400	310			
	BU55-4C+BU-F	230	135	47.5	280		310			
3-phase 400V	BU90-4C+BU-F	230		47.5	280		310	160	1.2	64
	BU132-4C+BU-F	250		57.5						
	BU220-4C+BU-F	250		57.5	450		480			

The DC reactor is mainly used for the unit type. With the stack type, the DC reactor is built into the diode converter and is used if necessary. * For details, refer to the Stack Type User Manual (24A7- -0018).

DC Reactor (DCR ☐ -

	Nominal															
Voltage	applied		Inverter Type		REACTOR	Fig						ions [mm]				Approx.
	motor [kW]	HD Specification	MD Specification	LD Specification	Type	. 19	W	W1	D	D1	D2	G	Н	H1	J	weight [kg]
	0.75	FRN0.75VG1S-2	-	_	DCR2-0.75		66	56	90	72	20	M4(5.2×8)	94	_	M4	1.4
	1.5	FRN1.5VG1S-2	-	_	DCR2-1.5		66	56	90	72	20	M4(5.2×8)	94	_	M4	1.6
	2.2	FRN2.2VG1S-2	-	_	DCR2-2.2		86	71	100	80	10	M5(6×9)	110	-	M4	1.8
	3.7	FRN3.7VG1S-2	-	_	DCR2-3.7		86	71	100	80	20	M5(6×9)	110	-	M4	2.6
	5.5	FRN5.5VG1S-2	-	_	DCR2-5.5	Α	111	95	100	80	20	M6(7×11)	130	-	M5	3.6
	7.5	FRN7.5VG1S-2	-	_	DCR2-7.5	^	111	95	100	80	23	M6(7×11)	130	_	M5	3.8
	11	FRN11VG1S-2	-	_	DCR2-11		111	95	100	80	24	M6(7×11)	137	-	M6	4.3
	15	FRN15VG1S-2	-	-	DCR2-15		146	124	120	96	15	M6(7×11)	180	-	M8	5.9
	18.5	FRN18.5VG1S-2	-	-	DCR2-18.5		146	124	120	96	25	M6(7×11)	180	-	M8	7.4
3-phase	22	FRN22VG1S-2	-	-	DCR2-22A		146	124	120	96	25	M6(7×11)	180	-	M8	7.5
200V	30	FRN30VG1S-2	-	_	DCR2-30B	В	152	90	156	116	115	M6(Φ8)	130	190	M10	12
200V	37	FRN37VG1S-2□	_	FRN30VG1S-2	DCR2-37B		171	110	151	110	115	M6(Φ8)	150	200	M10	14
	0,	111107 VG10-2	-	11110000010 2	DCR2-37C	С	210	185	101	81	125	M6(7×13)	125	-	M10	7.4
	45	FRN45VG1S-2	_	FRN37VG1S-2	DCR2-45B	В	171	110	166	125	120	M6(8)	150	200	M10	16
	70	111145VG10-2	-	111107 VG10-2	DCR2-45C	С	210	185	106	86	135	M6(7×13)	125	-	M12	8.4
	55	FRN55VG1S-2□	_	FRN45VG1S-2	DCR2-55B	D	190	160	131	90	100	M6(Φ8)	210	250	M12	16
		Thirdsvara-2	-		DCR2-55C	С	255	225	96	76	140	M6(7×13)	145	_	M12	11
	75	FRN75VG1S-2	-	FRN55VG1S-2	DCR2-75C		255	225	106	86	145	M6(7×13)	145	-	M12	12
	90	FRN90VG1S-2	-	FRN75VG1S-2	DCR2-90C	С	255	225	116	96	155	M6(7×13)	145	-	M12	14
	110	-	_	FRN90VG1S-2	DCR2-110C		300	265	116	90	185	M8(10×18)	160	_	M12	17
	3.7	FRN3.7VG1S-4	-	_	DCR4-3.7		86	71	100	80	20	M5(6×9)	110	_	M4	2.6
	5.5	FRN5.5VG1S-4	-	_	DCR4-5.5		86	71	100	80	20	M5(6×9)	110	_	M4	2.6
	7.5	FRN7.5VG1S-4	-	_	DCR4-7.5		111	95	100	80	24	M6(7×11)	130	-	M5	4.2
	11	FRN11VG1S-4	-	_	DCR4-11	Α	111	95	100	80	24	M6(7×11)	130	-	M5	4.3
	15	FRN15VG1S-4	-	-	DCR4-15		146	124	120	96	15	M6(7×11)	168	-	M5	5.9
	18.5	FRN18.5VG1S-4	-	_	DCR4-18.5		146	124	120	96	25	M6(7×11)	171	_	M6	7.2
	22	FRN22VG1S-4	-	-	DCR4-22A		146	124	120	96	25	M6(7×11)	171	-	M6	7.2
	30	FRN30VG1S-4	-	-	DCR4-30B	В	152	90	157	115	100	M6(Φ8)	130	190	M8	13
	37	FRN37VG1S-4□	_	FRN30VG1S-4	DCR4-37B	В	171	110	150	110	100	M6(Φ8)	150	200	M8	15
	- 01	111107 VG10-4	-	1111001010-4	DCR4-37C	С	210	185	101	81	105	M6(7×13)	125	_	M8	7.4
	45	FRN45VG1S-4□	_	FRN37VG1S-4	DCR4-45B	В	171	110	165	125	110	M6(Φ8)	150	210	M8	18
	70	I NIV43VG13-4	_	111107 1010-4	DCR4-45C	С	210	185	106	86	120	M6(7×13)	125	-	M8	8.4
	55	FRN55VG1S-4	_	FRN45VG1S-4	DCR4-55B	В	171	110	170	130	110	M6(Φ8)	150	210	M8	20
		Thisovers-4	-	1111437010-4	DCR4-55C	С	255	225	96	76	120	M6(7×13)	145	_	M10	11
	75	FRN75VG1S-4	-	FRN55VG1S-4	DCR4-75C		255	225	106	86	125	M6(7×13)	145	-	M10	13
3-phase	90	FRN90VG1S-4	-	FRN75VG1S-4	DCR4-90C		255	225	116	96	140	M6(7×13)	145	_	M12	15
400V	110	FRN110VG1S-4	FRN90VG1S-4	FRN90VG1S-4	DCR4-110C		300	265	116	90	175	M8(10×18)	155	-	M12	19
400V	132	FRN132VG1S-4	FRN110VG1S-4	FRN110VG1S-4	DCR4-132C		300	265	126	100	180	M8(10×18)	160	-	M12	22
	160	FRN160VG1S-4	FRN132VG1S-4	FRN132VG1S-4	DCR4-160C	С	350	310	131	103	180	M10(12×22)	190	-	M12	26
	200	FRN200VG1S-4	FRN160VG1S-4	FRN160VG1S-4	DCR4-200C		350	310	141	113	185	M10(12×22)	190	_	M12	30
	220	FRN220VG1S-4	FRN200VG1S-4	FRN200VG1S-4	DCR4-220C		350	310	146	118	200	M10(12×22)	190	_	M12	33
	250	_	FRN220VG1S-4	-	DCR4-250C		350	310	161	133	210	M10(12×22)	190	-	M12	35
	280	FRN280VG1S-4	-	FRN220VG1S-4	DCR4-280C		350	310	161	133	210	M10(12×22)	190	-	M16	37
	315	FRN315VG1S-4	FRN280VG1S-4	-	DCR4-315C		400	345	146	118	200	M10(12×22)	225	-	M16	40
	355	FRN355VG1S-4	FRN315VG1S-4	FRN280VG1S-4	DCR4-355C		400	345	156	128	200	M10(12×22)	225	-	4×M12	49
	400	FRN400VG1S-4	FRN355VG1S-4	FRN315VG1S-4	DCR4-400C	E	445	385	145	117	213	M10(12×22)	245	-	4×M12	52
	450	_	FRN400VG1S-4	FRN355VG1S-4	DCR4-450C		440	385	150	122	215	M10(12×22)	245	-	4×M12	62
	500	FRN500VG1S-4	-	FRN400VG1S-4	DCR4-500C		445	390	165	137	220	M10(12×22)	245	-	4×M12	72
	630	FRN630VG1S-4	-	FRN500VG1S-4	DCR4-630C	_	285	145	203	170	195	M12(14×20)	480	-	2×M12	75
	710	_	-	FRN630VG1S-4	DCR4-710C	F	340	160	295	255	225	M12(Φ15)	480	-	4×M12	95

[•]FRN □ VG1S- □ J (Japanese)

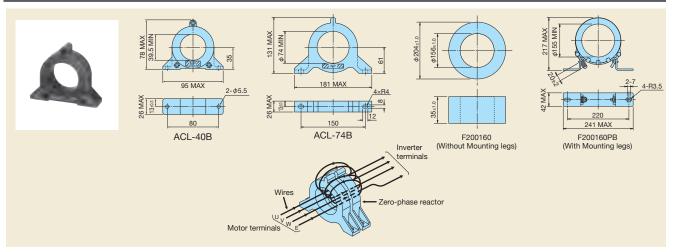
^{*}The DCR2/4-_B type is also prepared for motors with 75kW or larger, which are applicable as standard. Contact us for ordering product separately.

DC Reactor Type	Remarks
Input power factor of DCR2/4-	The symbol at the end of the type code varies depending on the capacity.
Input power factor of the DCR2/4- C: about 86 to 90%	This can be selected with the inverter of 37kW or more.

The DC Reactor (DCR) in thick-frame are provided as standard (supplied adding to the unit). The DC Reactor (DCR) is provided as standard for FRN55VG1S-2 and FRN55VG1S-4 of the

LD specification, but not provided as standard for those units of HD specification.

•FRN VG1S-E (English), -C (Chinese)

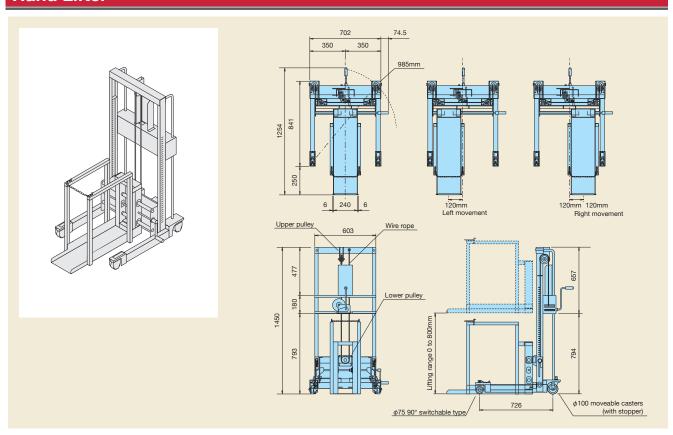

The DC reactor (DCR) is optional. (All capacities)

AC Reactor (ACR __-___) Fig. A Fig. B Fig. C |_W1_| _W1_ _W1_ __ D1 ___D1___ D1 D 4-mounting holes MAX.D2 (for screw G) 4-mounting holes (for screw G) Fig. E_w Fig. D ***** _ D1 W1_ W1 4-mounting holes (for screw G)

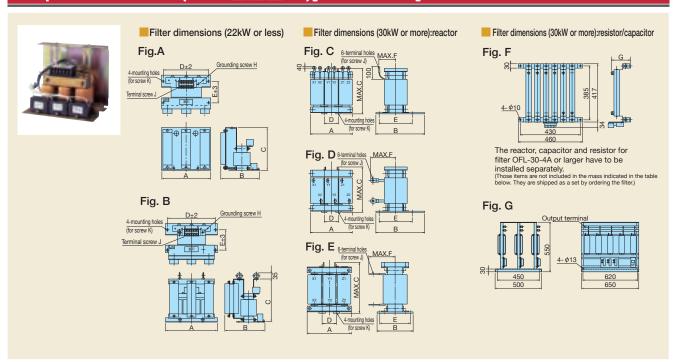
	Reactor					Dimens	ions [mm]				Approx.
Voltage	Type	Fig. No.	W	W1	D	D1	D2	G	Н	J	weight [kg]
	ACR2-0.75A		120	40	100	75	20	M5(6×10)	115	M4	1.9
	ACR2-1.5A		120	40	100	75	20	M5(6×10)	115	M4	2.0
	ACR2-2.2A	А	120	40	100	75	20	M5(6×10)	115	M4	2.0
	ACR2-3.7A		125	40	100	75	25	M5(6×10)	125	M4	2.4
	ACR2-5.5A		125	40	115	90	25	M5(6×10)	125	M4	3.1
	ACR2-7.5A		125	40	115	90	106	M5(6×10)	95	M5	3.1
3-phase	ACR2-11A		125	40	125	100	106	M5(6×10)	95	M6	3.7
200V	ACR2-15A	В	180	60	110	85	106	M6(7×11)	115	M6	4.8
2001	ACR2-18.5A		180	60	110	85	109	M6(7×11)	115	M6	5.1
	ACR2-22A		180	60	110	85	109	M6(7×11)	115	M6	5.1
	ACR2-37		190	60	120	90	172	M6(7×11)	190	M8	11
	ACR2-55		190	60	120	90	200	M6(7×11)	190	M12	13
	ACR2-75	С	250	100	120	90	200	M8(9×14)	250	M12	25
	ACR2-90		285	190	158	120	190	M10(12×20)	210	M12	26
	ACR2-110		280	150	138	110	200	M8(10×20)	270	M12	30
	ACR4-3.7A		125	40	100	75	106	M5(6×10)	95	M4	2.4
	ACR4-5.5A		125	40	115	90	106	M5(6×10)	95	M5	3.1
	ACR4-7.5A		125	40	115	90	106	M5(6×10)	95	M5	3.7
	ACR4-11A	В	180	60	110	85	106	M6(7×11)	115	M6	4.3
	ACR4-15A		180	60	110	85	106	M6(7×11)	137	M6	5.4
	ACR4-18.5A		180	60	110	85	106	M6(7×11)	137	M6	5.7
	ACR4-22A		180	60	110	85	106	M6(7×11)	137	M6	5.9
	ACR4-37		190	60	120	90	172	M6(7×11)	190	M8	12
3-phase	ACR4-55		190	60	120	90	200	M6(7×11)	190	M10	14
400V	ACR4-75		190	60	126	90	157	M6(7×10)	190	M10	16
	ACR4-110		250	100	136	105	202	M8(9.5×18)	245	M12	24
	ACR4-132	С	250	100	146	115	207	M8(10×16)	250	M12	32
	ACR4-220		320	120	150	110	240	M10(12×20)	300	M12	40
	ACR4-280		380	130	150	110	260	M10(12×20)	300	M12	52
	ACR4-355		380	130	150	110	260	M10(12×20)	300	M12	52
	ACR4-450	D	460	155	290	230	200	M12(Φ15)	490	4×M12	95
	ACR4-530	Е	480	155	420	370	_	M12(15×25)	380	4×M12	100
	ACR4-630		510	170	420	370	_	M12(15×25)	390	4×M12	110

Note) It is not necessary to use the reactor unless a particularly stable power supply is required, i.e., DC bus connection operation (PN connection operation). Use the DC reactor (DCR) as a measure against harmonics.

Zero-phase reactor for reducing radiated noise (ACL-40B, ACL-74B, F200160)



Applied wire size list


Ferrite ring types for reducing radio noise	Q'ty	No. of turns	Recommended wire size [mm²] Note)
	1	4	2.0, 3.5, 5.5
ACL-40B	2	2	8, 14
	4	1	22, 38, 5.5×2, 8×2, 14×2, 22×2
	1	4	8, 14
ACL-74B	2	2	22, 38, 60, 5.5×2, 8×2, 14×2, 22×2
	4	1	100, 150, 200, 250, 38×2, 60×2, 100×2
F200160	7		150×2,200×2,250×2,325×2
F200160 F200160PB	1	4	150×3,200×3,250×3,325×3
F200100PB			250×4,325×4

NOTE) Use a 600V HIV insulation cable (Allowable temp. 75°C).

Hand Lifter

Output circuit filter (OFL- 4A)[400V series]

	Nominal			Inverter Type			Filter					Dim	ensic	ons [r	nm]				Approx
Voltage	applied		Unit Type		Stack	Туре	Type	Fig	Α	В	С	D	Е	F	G	Grounding	Terminal	Mounting	weight
	motor [kW]	HD Specification	MD Specification	LD Specification	MD Specification	LD Specification	Type		A	-		D	_	Г	G	screw H	screw J	screw K	[kg]
	3.7	FRN3.7VG1S-4	_	-	-	-	OFL-3.7-4A		220	225	220	200	115	-	-	M4	M4	M5	14
	5.5	FRN5.5VG1S-4	_	_	_	_	OFL-7.5-4A	Α	290	290	230	260	160	-	_	M5	M5	M6	22
	7.5	FRN7.5VG1S-4	_	-	-	-	OFL-7.3-4A		290	290	230	200	100	_	_	IVIO	IVIO	IVIO	22
	11	FRN11VG1S-4	_	_	_	_	OFL-15-4A		330	275	310	300	145	_	_	M6	M6	M8	35
	15	FRN15VG1S-4	_	_	_	_	OFL-13-4A	В	330	213	310	300	140	_	_	IVIO	IVIO	IVIO	33
	18.5	FRN18.5VG1S-4	_	-	-	-	OFL-22-4A		330	300	330	300	170	-	_	M6	M6	M8	45
	22	FRN22VG1S-4		_	_	_	UFL-22-4A		330	300	330	300	170	_	_	IVIO	IVIO	IVIO	45
	30	FRN30VG1S-4	_	-	FRN30SVG1S-4	_	OFL-30-4A	C/F	210	175	210	70	140	90	160	-	M5	M6	12
	37	FRN37VG1S-4	_	FRN30VG1S-4	FRN37SVG1S-4	FRN30SVG1S-4	OFL-37-4A	U/F	220	190	220	75	150	95	160	-	M5	M6	15
	45	FRN45VG1S-4	_	FRN37VG1S-4	FRN45SVG1S-4	FRN37SVG1S-4	OFL-45-4A		220	195	265	70	155	140	160	-	M6	M8	17
	55	FRN55VG1S-4	_	FRN45VG1S-4	FRN55SVG1S-4	FRN45SVG1S-4	OFL-55-4A		260	200	275	85	160	150	160	-	M6	M8	22
	75	FRN75VG1S-4	-	FRN55VG1S-4	FRN75SVG1S-4	FRN55SVG1S-4	OFL-75-4A		260	210	290	85	170	150	233	-	M8	M10	25
3-phase	90	FRN90VG1S-4	_	FRN75VG1S-4	FRN90SVG1S-4	FRN75SVG1S-4	OFL-90-4A		260	210	290	85	170	155	233	-	M8	M10	28
'	110	FRN110VG1S-4	FRN90VG1S-4	FRN90VG1S-4	FRN110SVG1S-4	FRN90SVG1S-4	OFL-110-4A		300	230	330	100	190	170	233	-	M8	M10	38
400V	132	FRN132VG1S-4	FRN110VG1S-4	FRN110VG1S-4	FRN132SVG1S-4	FRN110SVG1S-4	OFL-132-4A	D/F	300	240	340	100	200	170	233	-	M10	M10	42
	160	FRN160VG1S-4	FRN132VG1S-4	FRN132VG1S-4	FRN160SVG1S-4	FRN132SVG1S-4	OFL-160-4A		300	240	340	100	200	180	233	-	M10	M10	48
	200	FRN200VG1S-4	FRN160VG1S-4	FRN160VG1S-4	FRN200SVG1S-4	FRN160SVG1S-4	OFL-200-4A		320	270	350	105	220	190	333	-	M10	M12	60
	220	FRN220VG1S-4	FRN200VG1S-4	FRN200VG1S-4	FRN220SVG1S-4	FRN200SVG1S-4	OFL-220-4A		340	300	390	115	250	190	333	-	M10	M12	70
	250	-	FRN220VG1S-4	-	FRN250SVG1S-4	FRN220SVG1S-4	OFL-280-4A		350	300	430	115	250	200	333		M10	M12	78
	280	FRN280VG1S-4	-	FRN220VG1S-4	FRN280SVG1S-4	FRN250SVG1S-4	UFL-280-4A		330	300	430	115	200	200	333	-	INITO	IVIIZ	10
	315	FRN315VG1S-4	FRN280VG1S-4	-	FRN315SVG1S-4	FRN280SVG1S-4	OFL-315-4A		440	275	450	150	230	170	_	-	M12	M12	90
	355	FRN355VG1S-4	FRN315VG1S-4	FRN280VG1S-4	-	FRN315SVG1S-4	OFL-355-4A		440	290	480	150	245	175	_	-	M12	M12	100
	400	FRN400VG1S-4	FRN355VG1S-4	FRN315VG1S-4	-	-	OFL-400-4A		440	295	510	150	240	175	_	-	M12	M12	110
	450	-	FRN400VG1S-4	FRN355VG1S-4	-	-	OFL-450-4A		440	325	470	150	270	195	-	-	M12	M12	125
	500	FRN500VG1S-4	-	FRN400VG1S-4	_	-	OFL-500-4A	E/G	440	335	500	150	280	210	-	-	M12	M12	145
	630	FRN630VG1S-4	-	FRN500VG1S-4	FRN630BVG1S-4	-	OFL-630-4A		480	355	560	150	280	245	-	-	M12	M12	170
	710	_	_	FRN630VG1S-4	FRN710BVG1S-4	FRN630BVG1S-4	-	1											
	800	-	-	-	FRN800BVG1S-4	FRN710BVG1S-4	-		_	_	_	-	-	-	-	-	_	-	-
	1000	_	_	_	-	FRN800BVG1S-4	_												

^{*} Carrier frequency is not limited with OFL-*** -4A.

Power regenerative PWM converter (Unit and Stack Type)

Features

Applied Guideline for Suppressing Harmonics

PWM control reduces harmonics current significantly, due to sinusoidal wave at power supply side.

According to "Guideline for Suppressing Harmonics by the Users Who Receive High Voltage or Special High Voltage" issued by the Ministry of Economy, Trade and Industry, the converter factor (Ki) can be set to "0" (meaning harmonics occurrence is 0) when combining with the inverter.

Possible to reduce power supply facility capacity

Its power-factor control realizes the same phase current as the power-supply phase-voltage. The equipment, thus, can be operated with the power-factor of almost "1."

This makes it possible to reduce the power transformer capacity and downsize the other devices, compared with those required without the converter.

Upgraded braking performance

Regenerated energy occurring at highly frequent accelerating and decelerating operation and elevating machine operation is entirely returned to power supply side. Thus, energy saving during regenerative operation is possible. As the current waveform is sinusoidal during regenerative operation, no troubles are caused to the power supply system.

Rated continuous regeneration

100%

Rated regeneration for 1 min

150% MD (CT) spec. 120% LD (VT) spec.

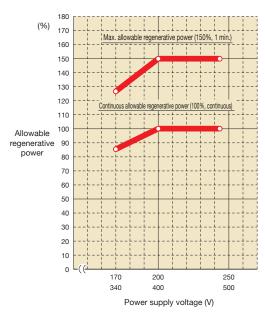
*Stack type: 110%

Enhanced maintenance/protective functions

Failure can be easily analyzed with the trace back (option).

- 1) The past 10 alarms can be displayed with the keypad LED display. This helps you analyze the alarm causes and take countermeasures.
- (2) When momentary power failure occurs, the converter turns off the gates to enable continuous operation after recovery.
- 3) The converter can issue warning signals like overload, heat sink overheating, or the end of service life prior to converter tripping.

Enhanced network support


•The converter can be connected to MICREX-SX and CC-Link master devices (using option). The RS-485 interface is provided as standard. (Unit type)

Comparison of input current waveform

<Without PWM converter> <With PWM converter>

Allowable characteristics of the RHC unit

Standard Specifications: MD (CT) specifications of medium overload, light overload LD (VT) specifications (Unit and Stack Type)

■ Unit type Three-phase 200V series

	ı	Item					Standa	ard Specific	cations					
Type R	HC 🗆 [□□-2C	7.5	11	15	18.5	22	30	37	45	55	75	90	
	Applica	ble inverter capacity [kW]	7.5	11	15	18.5	22	30	37	45	55	75	90	
		Continuous capacity [kW]	8.8	13	18	22	26	36	44	53	65	88	103	
CT	Output	Overload rating	150% of	rated curre	nt for 1 mir	١.								
Specifications		Voltage	DC320 to	355V (Vari	able with in	put power	supply volt	tage) (*3)						
	Required	d power supply capacity [kVA]	9.5	14	19	24	29	38	47	57	70	93	111	
Carrier frequency(*5) Standard 15kHz												Standard	d 10kHz	
	Applica	ble inverter capacity [kW]	11	15	18.5	22	30	37	45	55	75	90	110	
		Continuous capacity [kW]	13	18	22	26	36	44	53	65	88	103	126	
VT	Output	Overload rating	120% of	rated curre	nt for 1 mir	١.								
Specifications		Voltage	DC320 to	355V (Vari	able with ir	put power	supply volt	tage) (*3)						
	Required	d power supply capacity [kVA]	KVA 14 19 24 29 38 47 57 70 93 111 136									136		
	Carrie	er frequency(*5)	Standard 10kHz Standard 6kHz											
Power supply	Number	of phase/Voltage/Frequency	3-phase, 200 to 220V 50Hz,220 to 230V 50Hz(*1), 200 to 230V 60Hz											
voltage	Voltag	e/Frequency variation	Voltage+	10 to -15%	Frequency	± 5%, Volt	age unbala	ance: 2% oi	less (*4)					

■ Unit type Three-phase 400V series

		•																						
	I	tem									S	Standa	ard Sp	pecific	cation	S								
Type R	HC 🗆 🗆	□-4C	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500	630
	Applica	ble inverter capacity [kW]	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500	630
		Continuous capacity [kW]	8.8	13	18	22	26	36	44	53	65	88	103	126	150	182	227	247	314	353	400	448	560	705
CT	Output	Overload rating	1509	% of r	ated o	curren	t for ¹	1 min.																
Specifications		Voltage	DC6	40 to	710V	(Varia	ble w	ith inp	out po	wer s	upply	volta	age) (*:	3)										
	Required	power supply capacity [kVA]	9.5	14	19	24	29	38	47	57	70	93	111	136	161	196	244	267	341	383	433	488	610	762
	Carrie	er frequency(*5)	Stan	dard	15kHz	Z						Stan	dard	10kHz	<u>z</u>								Standa	rd 6kHz
	Applica	ble inverter capacity [kW]	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500	1	-
		Continuous capacity [kW]	13	18	22	26	36	44	53	65	88	103	126	150	182	227	247	314	353	400	448	560	-	-
VT	Output	Overload rating	1209	% of r	ated o	curren	t for 1	1 min.																
Specifications		Voltage	DC6	40 to	710V	(Varia	ble w	ith inp	out po	wer s	upply	volta	age) (*:	3)										
	Required	power supply capacity [kVA]	14	19	24	29	38	47	57	70	93	111	136	161	196	244	267	341	383	433	488	610	-	-
	Carrie	er frequency(*5)	Stan	dard	10kHz	Z						Stan	dard	6kHz										
Power supply	Number	of phase/Voltage/Frequency	3-ph	ase, 3	380 to	440V	50H:	z,380	to 46	0V 60	Hz(*2)												
VT On Specifications Re C	Voltage	e/Frequency variation	Volta	ıge+1	0 to -	10% F	requ	ency:	± 5%	, Volta	ige ur	nbalar	nce: 2	% or	less (*	4)								

^{(*1) 220} to 230V / 50Hz model available on request.

■ Stack type Three-phase 400V series

	Iter	m				Standard	Specification	S								
Type R	HC 🗆)-4D□	132S	160S	2008	220S	280S	315S	630B	710B	800B					
	Applical	ble inverter capacity [kW]	132	160	200	220	280	315	630	710	800					
		Continuous capacity [kW]	150	182	227	247	314	353	705	795	896					
MD	Output	Overload rating	150% of rate	ed current for	1 min.											
Specifications		Voltage	DC640 to 71	0V (Variable v	vith input pow	er supply volt	age) (*3)									
	Required	power supply capacity [kVA]	161	161 196 244 267 341 383 762 858 967												
	Carrie	er frequency(*5)	5kHz													
	Applical	ble inverter capacity [kW]	160	200	220	-	315	355	710	800	1000					
		Continuous capacity [kW]	182	227	247	-	353	400	795	896	1120					
LD	Output	Overload rating	110% of rate	ed current for	1 min.											
Specifications		Voltage	DC640 to 71	0V (Variable v	vith input pow	er supply volt	age) (*3)									
	Required	power supply capacity [kVA]	196 244 267 - 383 433 858 967 1210													
	Carrie	er frequency(*5)	5kHz													
Power supply	Number	of phase/Voltage/Frequency	3-phase, 380	to 440V 50H	Iz,380 to 460\	/ 60Hz(*2)										
voltage																

^(*2) The tap in the converter must be switched when the power supply voltage is 380 to 398V / 50Hz or 380 to 430V / 60Hz. The capacity must be reduced when the power supply voltage is less than 400V.

^(*2) The tap in the converter must be switched when the power supply voltage is 380 to 398V / 50Hz or 380 to 430V / 60Hz. The capacity must be reduced when the power supply voltage is less than 400V.

^(*3) The output voltage is 320 / 640V DC, 343 / 686V DC, 355 / 710V DC when the power supply voltage is 200 / 400V, 220 / 440V and 230 / 460V, respectively.

^(*4) Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average voltage [V] \times 67

^(*5) The carrier frequency is automatically set to 5kHz when OPC-VG7-SIR is installed (transformerless connection).

^(*3) The output voltage is 640 V DC, 686 V DC, and 710 V DC when the power supply voltage is 400 V, 440 V, and 460 V, respectively.

^(*4) Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average voltage [V] \times 67

^(*5) The carrier frequency is automatically set to 2.5kHz when OPC-VG7-SIR is installed (transformerless connection).

Standard Specifications: MD (CT) specifications of medium overload, light overload LD (VT) specifications (Unit and Stack Type)

■ Stack type Three-phase 690V series

		Item				Standard Sp	ecifications								
Type R	HC□C)-69D□	132S	160S	200S	250S	280S	315S	355S	400S	450S				
	Applica	able inverter capacity [kW]	132	160	200	250	280	315	355	400	450				
		Continuous capacity [kW]	150	182	227	280	314	353	400	448	504				
MD	Output	Overload rating	150% of rate	ed current for	1 min.										
Specifications		Voltage	DC895 to 10	73V (Variable	with input po	ower supply v	oltage)(*2)								
	Required	d power supply capacity [kVA]	161	196	244	304	341	383	433	488	549				
	Carrie	r frequency(*4)	5kHz	Hz											
	Applica	able inverter capacity [kW]	160	200	220	280	315	355	400	450	-				
		Continuous capacity [kW]	182	227	247	314	353	400	448	504	-				
LD	Output	Overload rating	110% of rate	ed current for	1 min.										
Specifications		Voltage	DC895 to 10	73V (Variable	with input po	ower supply \	oltage)(*2)								
	Required	d power supply capacity [kVA]	196	245	267	341	383	433	488	549	-				
	Carrie	r frequency(*4)	5kHz												
Power supply	Number	of phase/Voltage/Frequency	3-phase, 66	0 to 690V 50H	Hz/60Hz,575	to 600V 50Hz	z/60Hz(*1)								
voltage	Voltag	e/Frequency variation	Voltage+15	to -10% Freq	uency ± 5%,	Voltage unba	lance: 2% or	less(*3)							

^(*1)The tap inside the converter must be switched when the power supply voltage is 575 to 600V/50Hz or 575 to 600V/60Hz.

Common specifications (Unit and Stack Type)

	lhom	Specific	cations
	Item	Unit Type	Stack Type
	Control method	AVR constant control with ACR minor loop.	
	Running and operation	Rectification starts with power ON after connected. Boostin	g starts with the running signal (RUN-CM short-circuit
	nulling and operation	or running command from communications). Then, preparat	ion for operation is completed.
	Running status signal	Running, driving, regenerating, operation ready, alarm rela	y output (for any fault), etc.
control	MD(CT)/LD(VT) switching	Selecting from MD (CT): Overload rating 150% (1 min.) and LD (VT): Overload rating 120% (1 min.)	Selecting from MD (CT): Overload rating 150% (1 min.) and LD (VT): Overload rating 110% (1 min.)
	Carrier frequency	Fixed to high carrier frequency	5kHz (*2)
	Input power factor	Above 0.99 (when 100% loading)	
	Input harmonics current	According to the guideline for suppressing harmonics issued by the Ministr	
	Restart mode after momentary power failure	Stops the gates when the voltage level reaches undervoltage level if momentary power	r failure occurs, and the converter can automatically restart after the power recovers.
	Power limit control	Controls the power not to exceed the preset limit value.	
		AC fuse blown, AC overvoltage, AC undervoltage, AC overcurrent,	AC input current error, Input phase loss, Synchronous power supply
	Alarm display	frequency error, DC fuse blown, DC overvoltage, DC undervoltage,	Charge circuit error, Heat sink overheat, External alarm, Converter
	(protective functions)	overheat, Overload, Memory error, Keypad communication error, CF	PU error, Network device error, Operation procedure error, A/D
Displays		converter error, Optical network error, IPM error (*1)	
of	Alarm history	Records and displays the last 10 alarms.	
Keypad	Alaministory	The detailed information of the trip cause for the latest ala	rm is stored and displayed.
, , ,	Monitor	Displays input power, input effective current, input effective v	oltage, DC intermediate current and power supply frequency.
	Load factor	The load rate can be measured by using the keypad.	
	Display language	Text can displayed in 3 languages: Japanese, English and	Chinese.
	Charge LED	Lights when the main circuit capacitor is charged.	Lights when the main circuit capacitor is charged.
			Lights even when only input for control power.

^(*1) Not available in the stack type

The capacity must be reduced when the power supply voltage is less than 690V.

^(*2)The output voltage is 895VDC when the power supply voltage is 575V, and 1073VDC when the power supply voltage is 690V.

^(*3)Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average voltage [V] × 67 (*4)The carrier frequency is automatically set to 2.5kHz when OPC-VG7-SIR is installed (transformerless connection).

^(*2) The carrier frequency is automatically set to 2.5kHz when OPC-VG7-SIR is installed (transformerless connection).

[Terminal Functions] [Communications Specifications], [Function Settings], [Protective Functions], [Structure and environment]

Terminal Functions

Category	Terminal signal	Terminal name	Specifi	cations
Category	Terminai signai	Terminal marne	Unit Type	Stack Type
	L1/R, L2/S, L3/T	Main Power input	Connects with a 3-phase power supply via the dedicated reactor.	•
	P(+), N(-)	Converter output	Connects with the inverter power supply input terminal P (+), N (-).	
Main circuit	E(G)	Grounding	Ground terminal for inverter chassis (housing).	
Iviairi Circuit	R0, T0	Auxiliary control power supply input	Connects with the same power circuit as that for the control power by	
	R3, T3	Fan power supply input	-	If using a separate fan power supply, switch the tap inside the converter, and connect the fan power supply to the R3 and T3 terminals.
Voltage detection	R1, S1, T1	Synchronous power supply input for voltage detection	Voltage detection terminals used for the internal converter control. These are	e connected with the power supply side of the dedicated reactor and filter.
voltage detection	R2, T2	Control monitor input	Terminals that connect with the circuit for detecting disconnection ca	aused by blown AC fuse.
	RUN	RUN command	The converter starts running when this command is ON between RU	N and CM, and stops when OFF.
	RST	Alarm reset command		between RST and CM. The protective function is disabled and the alarm state is released.
	X1	Digital input	0: External fault [THR], 1: Current limit cancel [LMT-CCL], 2: 73 answ 3: Current limit switching [1-LIM], 4: Optional DI [OPY-DI]	verback [73ANS],
Input signal	СМ	Digital input common	Common terminal to digital input signals.	
	DCF1,DCF2	DC fuse blow-out detection input	-	When a DC fuse is connected to the converter output, a microswitch for detecting blow-out of the DC fuse is connected to this terminal. This terminal corresponds to the "b" contact output. DC 24V 12mA Typ
	PLC	PLC signal power	Connects with the PLC output signal power supply. (Rated voltage: 2	24V (22 to 27V) DC)
	30A, 30B, 30C	Alarm relay output (for any fault)	Outputs a signal when a protective function is activated to stop the (Contact at 1C, Circuit between 30A and 30C comes ON when an all	
	Y1, Y2, Y3, Y11 to Y18	General-purpose transistor output		current limiting [IL] 3: Lifetime alarm [LIFE] 4: Cooling fin overload [PRE-OH]
	CME	General-purpose transistor output common	10: Power supply frequency synchronizing [SY-HZ] 11: Alarm indication [AL	.1]12: Alarm indication 2 [AL2] 13: Alarm indication 4 [AL4]
Output signal	Y5A, Y5C	Relay output	14: Optional DO [OPT-DO] * With OPC-VG7-DIO option, 8-point expanded functions become a	vailable (DI function is not available.)
	A01, A04, A05	General-purpose analog output	0: Input power [PWR] 1: Input current rms [I-AC] 2: Input voltage rms 4: Power supply frequency [FREQ] 5: + 10V output test [P10] - 10V o * With OPC-VG7-AIO option, 2-point expanded functions become a	output test [N10]
	M	Analog output common	Common terminal to analog output signals.	
	73A, 73C	Charging circuit relay output	Control output for the input relay of the external charging resistor (73	3(

Communication specification

Item		Specifi	cations
item		Unit Type	Stack Type
	General specifications for communication	Enables to show running information and running status, and to monitor * No function code can be written.	the function code (polling), and to control (selecting) RUN, RST, and X1.
Communication	RS-485 (built in as standard)	Communication is possible with the PC or PLC (Fuji standard and R	
Specification	T-Link (option card)	OPC-VG7-TL option allows T-Link communication with the T-Link me	odule in the MICREX-F or MICREX-SX.
Specification	SX bus (option card)	OPC-VG7-SX option allows connection with MICREX-SX via SX bus	
	CC-Link (option card)	OPC-VG7-CCL option allows connection with the CC-Link master de	evice.
	Optical communications (optional)	OPC-VG7-SI / OPC-VG7-SIR option allows sharing the load by conr	ecting in parallel 2 or more converters.

Function Settings

Function code	Name
	Unit Type Stack Type
F00	Data protection
F01	High-frequency filter selection
F02	Restart mode after momentary power failure (operation selection)
F03	Current rating switching
F04	LED monitor (Display selection)
F05	LCD monitor (Display selection)
F06	LCD monitor (Language selection)
F07	LCD monitor (Contrast adjusting)
F08	Carrier frequency
E01	X1 function selection
E02 to 13	Y1,Y2,Y3,Y5,
	Y11 to 18 function selection
E14	I/O function normally open/normally closed
E15	RHC overload early warning level
E16	Cooling fan ON-OFF control
E17	Output while limiting the current (hysteresis width)
E18 to 20	A01, A04, A05 function selection
E21 to 23	A01, A04, A05 gain setting
E24 to 26	A01, A04, A05 bias setting
E27	A01 to 5 filter setting
S01	Operation method
S02,03	Power supply current limit (drive/ control)
H01	Station address
H02	Communication error processing selection
H03	Timer operation time
H04	Baud rate
H05	Data length selection
H06	Parity bit selection
H07	Stop bit selection
H08	No-response error detection time
H09	Response interval time
H10	Protocol selection
H11	TL transmission format
H12	Parallel system
H13	Number of slave stations in parallel system
H14	Alarm data deletion
H15,16	Power supply current limit (drive 1/2)
H17,18	Power supply current limit (control 1/2)
H19,20	Current limit early warning (level/ timer
M09	Power supply frequency
M10	Input power
M11	Effective input current
M12	Effective input voltage
M13	Run command
M14	Running status
M15	Output terminals Y1 to Y18

Protective Functions

Item	Disalassa	Protection S	pecifications	Remarks
item	Displays	Unit Type	Stack Type	Hemarks
AC fuse blown	ACF	When the AC fuse is blown (only R and	T phases), the converter stops running.	
AC overvoltage	AOV	The converter stops running on detection	on of AC overvoltage.	
AC undervoltage	ALV	The converter stops running on detection	on of AC undervoltage.	
AC overcurrent	AOC	The converter stops running if the input curre	nt peak value exceeds the overcurrent level.	
AC input current error	ACE	The converter stops running on detection of ex	cessive deviation between AC input and ACR.	
Input phase loss	LPV	The converter stops running if the input	phase loss occurs in the power supply.	
Synchronous power	FrE	The power supply frequency is checked after 73 is	nput. If a frequency error is detected, the converter	
supply frequency error		stops running. Error during converter running (such	as momentary power failure) triggers no alarm.	
DC fuse blown	dCF	The converter stops running if the DC for	use is blown (P side).	Above 18.5kW
DC overvoltage	dOV	The converter stops running on detection	on of DC overvoltage.	200V series: Above 400V ± 3V
		If the power failure takes long and the o	ontrol power goes out, the converter is	400V series: Above 800V ± 5V
		automatically reset.		690V series: Above 1230V ± 10V
DC undervoltage	dLV	The converter stops running on detection		200V series: Goes off at 185V and restarts at 208V
		If the power failure takes long and the o	ontrol power goes out, the converter is	400V series: Goes off at 371V and restarts at 417V
		automatically reset.		690V series: Goes off at 470V and restarts at 580V
Charge circuit error	PbF	When the charge circuit error is detecte		Condition: X1 "73 Answerback" is selected.
		configured in the digital input X1, the co		
Cooling fin overheat	OH1	The converter stops running if the cooli		
External alarm	OH2	The converter stops running if an extern		Condition: X1 "External alarm" is selected.
Converter internal overheat	OH3	When overheat is detected in the invert		
Converter overload	OLU	When the output current exceeds the overload characteristic		Start point: 105%, 150% 1 minute
Memory error	Er1	When a fault such as "write error" occurs in		
		and RAM do not match), the converter stop		
Keypad communication error	Er2	Activated if an error is detected during i	nitial communication.	
0811		The converter continues operating.	·DU	
CPU error	Er3	Activated if an error is detected in the C		
Network device error	Er4	The converter stops running if a fatal error	is detected in the master network device	Applicable to T-Link, SX and CC-Link
0 "		(including unconnected power supply).		
Operation procedure error	Er6	When an error is detected in operation		
A/D converter error	Er8	When an error is detected in the A/D conv		
Optical network error	Erb	The converter stops running if the optical cable is disconnect	ted or a tatal error is detected in an optical device (optional)	1 1 151111
IPM error	IPE	Activated if IPM self-shutoff function is triggered by	-	Less than 15kW
		excessive current or overheat.		

Structure and environment

Item		Structure, environr	ment and standard	Remarks
item		Unit Type	Stack Type	nemarks
	Structure	Installed in the panel and cooled by external device		
	Protective structure	IP00		
Structure	Cooling system	Forced air cooling		
Specifications	Installation method	Vertical installation		
	Painting Color	Munsell 5Y3/0.5 half-burnished		
	Maintainability	Structure designed for easy parts change		
	Location		gas, dust and oil mist) (Pollution level 2: IEC 60664-1)	
	Location	No direct sunlight.		
	Ambient temperature	-10 to 50°C	-10 to +40°C	
	Humidity	5 to 95% RH Without condensing		
		Less than 3000m		
Environment	Altitude	However, the output may be reduced at the altitude		
LIMIOIIIIEIL	/ iiiidac	For use at the altitude of 2001 to 3000m, the insula		
		circuit is changed from "Enhanced insulation" to "E		
	Vibration	2 to 9Hz: Amplitude=3mm, 9 to 20Hz: 9.8m / s², 20 to 55Hz: 2m / s²	Amplitude = 0.3mm, 2 to 9Hz:	
		(9 to 55Hz: 2 m / s ² is used if the power is higher than 90kW.)	1m / s ² :9 to 200Hz ²	
	Storage temperature	-20 to 55°C	-25 to 70°C (-10 to +30°C for long-term storage)	
	Storage humidity	5 to 95%RH		

Equipment Configuration List

Unit Type (CT Specifications)

Power	Nominal	PWM	Charging ci	ircuit	Contacto	r for			Charging circu	it bo	OX (*1)		Boosting	g	Resistor		Reacto	or	Capacito	or	Filtering of	circui
Supply	applied	converter	contacto	or	power so	urce			Charging resis	tor	AC Fuse		reactor		for filter		for filte	r	for filte	r	contac	tor
Voltage	motor [kW]	Type	(73)	Q'ty	(52)	Qʻty	(CU)	Q'ty	(R0)	Q'ty	(Fac)	Qʻty	(Lr)	Qʻty	(Rf)	Qʻty	(Lf)	Q'ty	(Cf)	Q'ty	(6F)	Q'
	7.5	RHC7.5-2C	SC-5-1	1			CU7.5-2C	1	(80W 7.5Ω)	(3)	(CR2LS-50/UL)	(2)	LR2-7.5C	1	GRZG80 0.42Ω	3	LFC2-7.5C	1	CF2-7.5C	1		Т
	11	RHC11-2C	SC-N1	1	1		CU11-2C	1	(HF5C5504)		(CR2LS-75/UL)	(2)	LR2-15C	1	GRZG150 0.2Ω	3	LFC2-15C	1	CF2-15C	1		
	15	RHC15-2C	SC-N2	1]		CU15-2C	1			(CR2LS-100/UL)	(2)										
	18.5	RHC18.5-2C	SC-N3	1			CU18.5-2C	1	(GRZG120 2Ω)	(3)			LR2-22C	1	GRZG200 0.13Ω	3	LFC2-22C	1	CF2-22C	1		
	22	RHC22-2C		1			CU22-2C	1			(CR2L-150/UL)	(2)										
3-phase	30	RHC30-2C	SC-N4	1			CU30-2C	1			(CR2L-200/UL)	(2)	LR2-37C	1	GRZG400 0.1Ω	3	LFC2-37C	1	CF2-37C	1		
200V	37	RHC37-2C	SC-N5	1			CU45-2C	1	1		(CR2L-260/UL)	(2)										
	45	RHC45-2C	SC-N7	1									LR2-55C	1			LFC2-55C	1	CF2-55C	1		
	55	RHC55-2C	SC-N8	1			CU55-2C	1			(CR2L-400/UL)	(2)										
	75	RHC75-2C	SC-N11	1			CU75-2C	1					LR2-75C	1			LFC2-75C	1	CF2-75C	1		
	90	RHC90-2C					CU90-2C	1	(GRZG400 1Ω)	(3)	(A50P600-4)	(2)	LR2-110C	1	GRZG400 0.12Ω	6	LFC2-110C	1	CF2-110C	1		
															[2 parallel]							
	7.5	RHC7.5-4C	SC-05	1			CU7.5-4C	1	(TK50B 30ΩJ)	(3)	(CR6L-30/UL)	(2)	LR4-7.5C	1	GRZG80 1.74Ω	3	LFC4-7.5C	1	CF4-7.5C	1		T
	11	RHC11-4C	SC-4-0	1			CU15-4C	1	(HF5B0416)		(CR6L-50/UL)	(2)	LR4-15C	1	GRZG150 0.79Ω	3	LFC4-15C	1	CF4-15C	1		
	15	RHC15-4C	SC-5-1	1																		
	18.5	RHC18.5-4C	SC-N1	1			CU18.5-4C	1	(80W 7.5ΩJ)	(3)			LR4-22C	1	GRZG200 0.53Ω	3	LFC4-22C	1	CF4-22C	1		
	22	RHC22-4C					CU22-4C	1	(HF5C5504)		(CR6L-75/UL)	(2)										
	30	RHC30-4C	SC-N2	1			CU30-4C	1			(CR6L-100/UL)	(2)	LR4-37C	1	GRZG400 0.38Ω	3	LFC4-37C	1	CF4-37C	1		
	37	RHC37-4C	SC-N2S	1			CU45-4C	1]		(CR6L-150/UL)	(2)										
	45	RHC45-4C	SC-N3	1									LR4-55C	1	GRZG400 0.26Ω	3	LFC4-55C	1	CF4-55C	1		
	55	RHC55-4C	SC-N4	1			CU55-4C	1			(CR6L-200/UL)	(2)										
	75	RHC75-4C	SC-N5	1			CU75-4C	1					LR4-75C	1	GRZG400 0.38Ω	3	LFC4-75C	1	CF4-75C	1		
	90	RHC90-4C	SC-N7	1			CU90-4C	1			(CR6L-300/UL)	(2)	LR4-110C	1	GRZG400 0.53Ω	6	LFC4-110C	1	CF4-110C	1		
3-phase	110	RHC110-4C	SC-N8	1			CU110-4C	1	(GRZG120 2Ω)	(3)				<u> </u>	[2 parallel]							
400V	132	RHC132-4C					CU132-4C	1			(A50P400-4)		LR4-160C	1	RF4-160C	1	LFC4-160C	1	CF4-160C	1		
	160	RHC160-4C	SC-N11	1			CU160-4C	1			(A50P600-4)	(2)										
	200	RHC200-4C	SC-N12	1			CU200-4C	1	(GRZG400 1Ω)	(3)			LR4-220C	1	RF4-220C	1	LFC4-220C	1	CF4-220C	1		
	220	RHC220-4C					CU220-4C	1			(A70QS800-4)	(2)										
	280	RHC280-4C	SC-N3	1	SC-N14	1			GRZG400 1Ω	6	A70QS800-4	-	LR4-280C	1	RF4-280C	1	LFC4-280C	_	CF4-280C	1	SC-N4	1
	315	RHC315-4C							[2 parallel]		A70P1600-4TA	2	LR4-315C	1	RF4-315C	1	LFC4-315C	1	CF4-315C	1		
	355	RHC355-4C											LR4-355C	1	RF4-355C	1	LFC4-355C		CF4-355C	1		
	400	RHC400-4C			SC-N16	1							LR4-400C	1	RF4-400C	1	LFC4-400C	1	CF4-400C	1		
	500	RHC500-4C			SC-N11	3							LR4-500C	1	RF4-500C	1	LFC4-500C	1	CF4-500C	1(°2)	SC-N4(*3)	1
	630	RHC630-4C			SC-N12	3					A70P2000-4	2	LR4-630C	1	RF4-630C	1	LFC4-630C	1	CF4-630C	1(*2)	SC-N7(*3)	1

Stack Type (MD Specifications)

Power Supply	Nominal applied	PWM converter	Charging o		Contacto power so				Charging circu	_	AC Fuse		Boosti		Resistor for filter		React for filt		Capacite for filte		Filtering of	
Voltage	motor [kW]		(73)	Q'ty	(52)	Q'ty	(CU)	Q'ty	(R0)	Q'ty	(Fac)	Q'ty	(Lr)	Qty	(Rf)	Qʻty	(Lf)	Q'ty	(Cf)	Q'ty	(6F)	Q'ty
	132	RHC132S-4D														_		_				
	160	RHC160S-4D	1																			
	200	RHC200S-4D	1					Us	se a filte	er s	stack (F	RHF	Seri	es)								
3-phase	220	RHC220S-4D									•			•	efer to the periphe	ral d	levices or	P70	1			
400V	280	RHC280S-4D						(02	., απα (ι ασ, ε		oquirea ocpai	acciy.	i oi dott	,	orer to the periprie	iuic	10 01000 01					
4001	315	RHC315S-4D																				
	630	RHC630B-4D	SC-N3	1	SC-N12	3		0	GRZG400 1Ω	6	SA598473	2	LR4-630C	1	RF4-630C	1	LFC4-6300	1	CF4-630C	1(*2)	SC-N7(*3)	1
	710	RHC710B-4D	SC-N4	1		Ш		[2	2 parallel]		HF5G2655	2	LR4-710C	1	RF4-710C	1	LFC4-7100	1	CF4-710C	1(*2)	SC-N8	1
	800	RHC810B-4D			SC-N14	3							LR4-800C	1	RF4-800C	1	LFC4-8000	1	CF4-800C	1(*2)		
	132	RHC132S-69D																				
	160	RHC160S-69D																				
		RHC200S-69D																				
3-phase	250	RHC250S-69D						H	e a filte	r و	stack (F	HF	Seri	PS)								
690V		RHC280S-69D																D7/	,			
	315	RHC315S-69D						(52	z) and (Fac) a	ire re	equired separ	ately.	For deta	uis, re	efer to the periphe	ral (ievices of	1 1 / (J.			
	355	RHC355S-69D	4																			
		RHC400S-69D																				
	450	RHC450S-69D																				

(Note 1) 690V series: Use the filter stack (dedicated 690 V part) for the PWM converter peripheral device.

(Note 2) RHC132S-4D□ to RHC315S-4D□: Contact Fuji if using a peripheral device (73, CU, R0, Fac, Lr, Rf, Lf, Cf) other than a filter stack.

^(*1) The charging resistor (R0) and AC fuse (F) have been built inside the charging circuit box (CU). When the charging circuit box (CU) is not ordered, the charging resistor (R0) and fuse (F) must be ordered separately. (*2) The filter capacitor consists of two capacitors. A pair of capacitors is shipped by ordering "1" pc.

^(*3) When changing the carrier frequency from the factory default, it is necessary to change the filtering circuit contactor (6F). For details, refer to the PWM converter Instruction Manual.

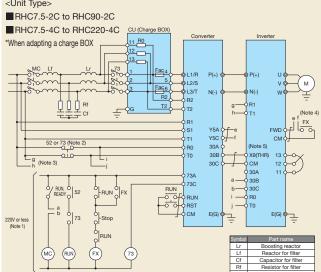
Equipment Configuration List

Unit Type (VT Specifications)

Power	Nominal	PWM	Charging c	ircuit					Charging circu	it bo	OX (*1)		Boosting		Resistor		Reacto		Capacit		Filtering c	
Supply	applied	converter	contact	or	power so	urce			Charging resis	tor	AC Fuse		reactor		for filter		for filte	r	for filte	r	contact	.or
Voltage	motor [kW]	Type	(73)	Q'ty	(52)	Q'ty	(CU)	Qʻty	(R0)	Qʻty	(Fac)	Q'ty	(Lr)	Q'ty	(Rf)	Qʻty	(Lf)	Qʻty	(Cf)	Q'ty	(6F)	Q't
	11	RHC7.5-2C	SC-N1	1			CU7.5-2C	1	(80W 7.5Ω)	(3)	(CR2LS-50/UL)	(2)	LR2-15C	1	GRZG150 0.2Ω	3	LFC2-15C	1	CF2-15C	1		П
	15	RHC11-2C	SC-N2	1]		CU11-2C	1	(HF5C5504)		(CR2LS-75/UL)	(2)										
	18.5	RHC15-2C	SC-N3	1			CU15-2C	1			(CR2LS-100/UL)	(2)	LR2-22C	1	GRZG200 0.13Ω	3	LFC2-22C	1	CF2-22C	1		
	22	RHC18.5-2C					CU18.5-2C	1	(GRZG120 2Ω)	(3)												
3-phase	30	RHC22-2C	SC-N4	1			CU22-2C	1			(CR2L-150/UL)	(2)	LR2-37C	1	GRZG400 0.1Ω	3	LFC2-37C	1	CF2-37C	1		
200V	37	RHC30-2C	SC-N5	1			CU30-2C	1			(CR2L-200/UL)	(2)										
	45	RHC37-2C	SC-N7	1]		CU45-2C	1]		(CR2L-260/UL)	(2)	LR2-55C	1			LFC2-55C	1	CF2-55C	1		
	55	RHC45-2C	SC-N8	1																		
	75	RHC55-2C	SC-N11	1	1		CU55-2C	1			(CR2L-400/UL)	(2)	LR2-75C	1			LFC2-75C	1	CF2-75C	1		
	90	RHC75-2C					CU75-2C	1					LR2-110C	1	GRZG400 0.12Ω	6	LFC2-110C	1	CF2-110C	1		
	110	RHC90-2C	SC-N12	1			CU90-2C	1	(GRZG400 1Ω)	(3)	(A50P600-4)	(2)			[2 parallel]							
	11	RHC7.5-4C	SC-4-0	1			CU7.5-4C	1	(TK50B 30ΩJ)	(3)	(CR6L-30/UL)	(2)	LR4-15C	1	GRZG150 0.79Ω	3	LFC4-15C	1	CF4-15C	1		
	15	RHC11-4C	SC-5-1	1			CU15-4C	1	(HF5B0416)		(CR6L-50/UL)	(2)										
	18.5	RHC15-4C	SC-N1	1									LR4-22C	1	GRZG200 0.53Ω	3	LFC4-22C	1	CF4-22C	1		
	22	RHC18.5-4C]				CU18.5-4C	1	(80W 7.5ΩJ)	(3)]											
	30	RHC22-4C	SC-N2	1]		CU22-4C	1	(HF5C5504)		(CR6L-75/UL)	(2)	LR4-37C	1	GRZG400 0.38Ω	3	LFC4-37C	1	CF4-37C	1		
	37	RHC30-4C	SC-N2S	1]		CU30-4C	1			(CR6L-100/UL)	(2)										
	45	RHC37-4C	SC-N3	1			CU45-4C	1]		(CR6L-150/UL)	(2)	LR4-55C	1	GRZG400 0.26Ω	3	LFC4-55C	1	CF4-55C	1		
	55	RHC45-4C	SC-N4	1]																	
	75	RHC55-4C	SC-N5	1]		CU55-4C	1]		(CR6L-200/UL)	(2)	LR4-75C	1	GRZG400 0.38Ω	3	LFC4-75C	1	CF4-75C	1		
	90	RHC75-4C	SC-N7	1			CU75-4C	1					LR4-110C	1	GRZG400 0.53Ω	6	LFC4-110C	1	CF4-110C	1		
3-phase	110	RHC90-4C	SC-N8	1			CU90-4C	1			(CR6L-300/UL)	(2)			[2 parallel]							
400V	132	RHC110-4C					CU110-4C	1	(GRZG120 2Ω)	(3)			LR4-160C	1	RF4-160C	1	LFC4-160C	1	CF4-160C	1		
	160	RHC132-4C	SC-N11	1			CU132-4C	1			(A50P400-4)	(2)										
	200	RHC160-4C	SC-N12	1]		CU160-4C	1			(A50P600-4)	(2)	LR4-220C	1	RF4-220C	1	LFC4-220C	1	CF4-220C	1		
	220	RHC200-4C					CU200-4C	1	(GRZG400 1Ω)	(3)	1											
	280	RHC220-4C	SC-N14	1			CU220-4C	1			(A70QS800-4)	(2)	LR4-280C	1	RF4-280C	1	LFC4-280C	1	CF4-280C	1		
	315	RHC280-4C	SC-N3	1	SC-N14	1			GRZG400 1Ω	6	A70QS800-4	2	LR4-315C	1	RF4-315C	1	LFC4-315C	1	CF4-315C	1	SC-N4	1
	355	RHC315-4C							[2 parallel]		A70P1600-4TA	2	LR4-355C	1	RF4-355C	1	LFC4-355C	1	CF4-355C	1		
	400	RHC355-4C			SC-N16	1							LR4-400C	1	RF4-400C	1	LFC4-400C	1	CF4-400C	1		
	500	RHC400-4C			SC-N11	3							LR4-500C	1	RF4-500C	1	LFC4-500C	1	CF4-500C	1(*2)	SC-N4/SF	1

Stack Type (LD Specifications)

Power	Nominal	PWM	Charging of		Contact	or for			Charging circ	uit bo)х ^(*1)		Boostin		Resistor		React		Capacit		Filtering c	
Supply	applied	converter	contac	tor	power s	ource			Charging resi	stor	AC Fuse		reactor		for filter		for filte	er	for filte	r	contact	tor
Voltage	motor [kW]	Type	(73)	Q'ty	(52)	Q'ty	(CU)	Q'ty	(R0)	Q'ty	(Fac)	Q'ty	(Lr)	Q'ty	(Rf)	Q'ty	(Lf)	Qʻty	(Cf)	Q'ty	(6F)	Q'ty
	160	RHC132S-4D□																				
	200	RHC160S-4D□						He	a filt	ar.	stack (Rh	46	Sprie	e)								
	220	RHC200S-4D□									•			•								
3-phase	315	RHC280S-4D□						* (52	2) and (Fac) a	are r	equired separat	ely.	For detail	s, re	efer to the peripher	al c	levices or	P70).			
400V		RHC315S-4D□																				
4001	710	RHC630B-4D	SC-N4	1	SC-N12	3			GRZG400 1Ω	6	HF5G2655	2	LR4-710C	1	RF4-710C	1	LFC4-7100	1	CF4-710C	1(*2)	SC-N8	1
	800	RHC710B-4D			SC-N14	3		[:	2 parallel]				LR4-800C	1	RF4-800C	1	LFC4-8000	1	CF4-800C	1(*2)		
	1000	RHC810B-4D			SC-N16	3					(*4)		LR4-1000C	1	RF4-1000C	1	LFC4-10000	1	CF4-1000C	1(*2)	SC-N11/SF	- 1
	160	RHC132S-69D□																				
	200	RHC160S-69D																				
	220	RHC200S-69D□																				
3-phase	280	RHC250S-69D□						Us	se a filt	er:	stack (Rŀ	łF	Serie	es)								
690V		RHC280S-69D									•			•	efer to the peripher	al d	levices or	P70).			
030 V	355	RHC315S-69D						(01	_, (1 40) (oquii ou oopui ui	y.	. c. dotai	٠, ١٠	one to the periprier	<u></u>						
	400	RHC355S-69D																				
	450	RHC400S-69D																				


(Note 1) 690V series: Use the filter stack (dedicated 690 V part) for the PWM converter peripheral device.

(Note 2) RHC132S-4D to RHC315S-4D : Contact Fuji if using a peripheral device (73, CU, R0, Fac, Lr, Rf, Lf, Cf) other than a filter stack.

- (*1) The charging resistor (R0) and AC fuse (F) have been built inside the charging circuit box (CU). When the charging circuit box (CU) is not ordered, the charging resistor (R0) and fuse (F) must be ordered separately.
- (*2) The filter capacitor consists of two capacitors. A pair of capacitors is shipped by ordering "1" pc.
- ("3) When changing the carrier frequency from the factory default, it is necessary to change the filtering circuit contactor (6F). For details, refer to the PWM converter Instruction Manual. ("4) Contact Fuji.

Basic Wiring Diagram

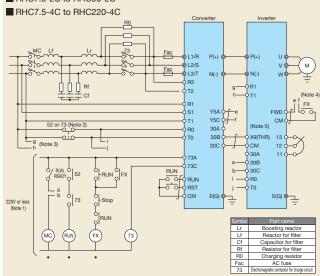
<Unit Type>

(Note 1) If the main power supply is 400V series, connect a step-down transformer to limit the voltage of the sequence circuit lower than 220V.

voltage of the sequence circuit lower than 220V.

(Note 2) The auxiliary power supply input terminals for the PWM converter (R0, T0) must be connected to the main power supply via the contact" b" of the charging circuit electromagnetic contactor (73 or MC). When applying ungrounded power supply, ground transformer must be set.

(Note 3) For the capacities FRN37VG1S-2□ and FRN75VG1S-4□ or higher and stack type inverter (all capacity range), connect the inverter fan power auxiliary input terminals (R1,T1) to the main power supply without passing through the contact "b" of 73 or MC.


(Note 4) Use the sequence that the run command signal is input in the inverter after the PWM converter becomes ready.

(Note 5) One of terminals (X1 to X9) on the inverter unit must be set to external alarm (THR).

(Note 6) Be sure to connect the L1/R, L2/S, L3/T, R2, T2, R1, S1, and T1 terminals keeping the phase sequence.

<Unit Type>

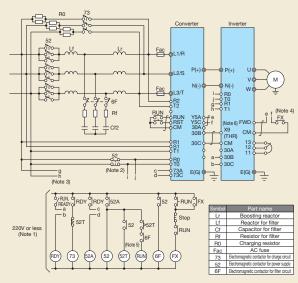
■ RHC7.5-2C to RHC90-2C

(Note 1) If the main power supply is 400V series, connect a step-down transformer to limit the voltage of the sequence circuit lower than 220V.

voltage of the sequence circuit lower than 220V.

(Note 2) The auxiliary power supply input terminals for the PWM converter (R0, T0) must be connected to the main power supply via the contact* b* of the charging circuit electromagnetic contactor (73 or MC). When applying ungrounded power supply, ground transformer must be set.

(Note 3) For the capacities FRN37VG1S-2□ and FRN75VG1S-4□ or higher and stack type inverter


(all capacity range), connect the inverter fan power auxiliary input terminals (R1,T1) to the main power supply without passing through the contact "b" of 73 or MC.

(Note 4) Use the sequence that the run command signal is input in the inverter after the PWM converter becomes ready.
(Note 5) One of terminals (X1 to X9) on the inverter unit must be set to external alarm (THR).

(Note 6) Be sure to connect the L1/R, L2/S, L3/T, R2, T2, R1, S1, and T1 terminals keeping the phase sequence.

<Unit Type>

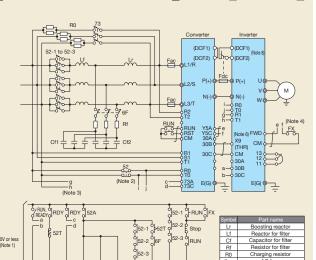
■RHC280-4C to RHC400-4C

(Note 1) Connect a step-down transformer to limit the voltage of the sequence circuit lower than 220V. (Note 2) The auxiliary power supply input terminals for the PVM converter (R0, T0) must be connected to the main power supply via the contact "b" of the charging circuit electromagnetic contactor (52). When applying ungrounded power supply, grounded transformer must be set.

(Note 3) Since the AC fan power supply receives power from R1 and T1 terminals, the power supply must be connected without passing through the contact "b" of 73 or MC.

(Note 4) Use the sequence that the run command signal is input in the inverter after the PWM

converter becomes ready.
(Note 5) The 52T timer must be set to 1 sec.
(Note 6) One of terminals (X1 to X9) on the inverter unit must be set to external alarm (THR).


(Note 7) Be sure to connect the L1/R, L2/S, L3/T, R2, T2, R1, S1, and T1 terminals keeping the

phase sequence.

<Unit Type> RHC500-4C to RHC630-4C

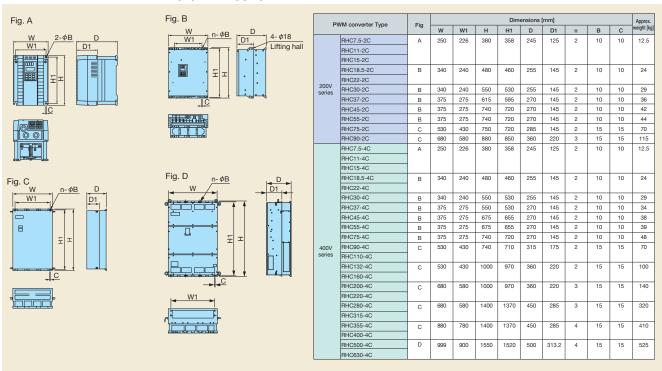
<Stack Type>

RHC630S-4D to RHC800B-4D

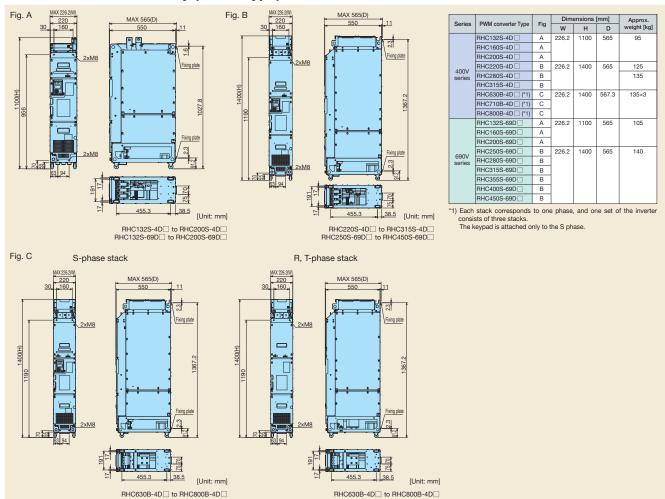
(Note 1) Connect a step-down transformer to limit the voltage of the sequence circuit lower than 220V. (Note 2) The auxiliary power supply input terminals for the PVM converter (R0, T0) must be connected to the main power supply via the contact "b" of the charging circuit electromagnetic contactor (52). When applying ungrounded power supply, grounded transformer must be set.

(Note 3) Since the AC fan power supply receives power from R1 and T1 terminals, the power supply must be connected without passing through the contact "b" of 73 or MC.

(Note 4) Use the sequence that the run command signal is input in the inverter after the PVM

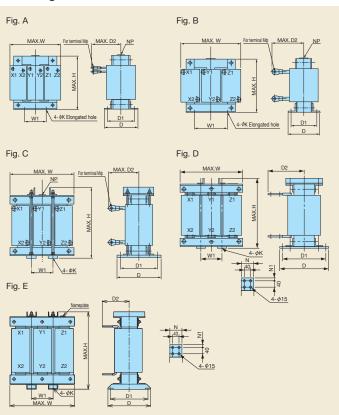

converter becomes ready.
(Note 5) The 52T timer must be set to 1 sec.
(Note 6) One of terminals (X1 to X9) on the inverter unit must be set to external alarm (THR).

(Note 7) Be sure to connect the L1/R, L2/S, L3/T, R2, T2, R1, S1, and T1 terminals keeping the

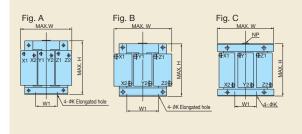

phase sequence.
(Note 8) Not available in the unit type inverter.

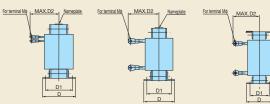
External Dimensions

PWM converter main body (Unit Type)



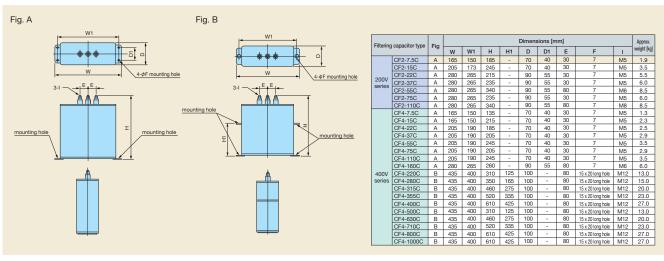
PWM converter main body (Stack Type)


External Dimensions

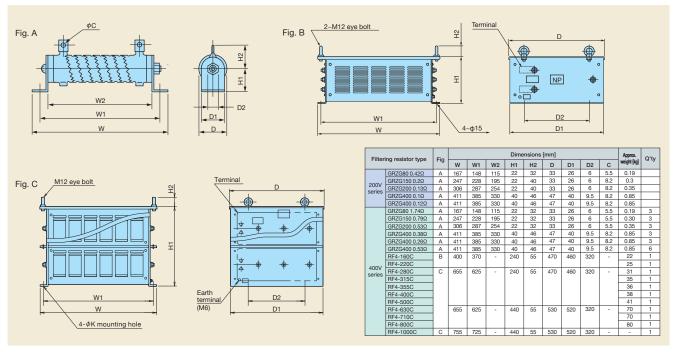

<Boosting reactor>

	ssurization					D	imensi	ons [mn	1]				Approx.
rea	ctor Type	Fig	W	W1	Н	D	D1	D2	K	М	N	N1	weight [kg]
	LR2-7.5C	Α	180	75	205	105	85	95	7	M5	-	-	12
	LR2-15C	В	195	75	215	131	110	130	7	M8		-	18
	LR2-22C	С	240	80	340	215	180	145	10	M8	-	-	33
200V series	LR2-37C	С	285	95	420	240	205	150	12	M10	-	-	50
	LR2-55C	С	285	95	420	250	215	160	12	M12	1	-	58
	LR2-75C	С	330	110	440	255	220	165	12	M12	1	-	70
	LR2-110C	С	345	115	500	280	245	185	12	M12	-	-	100
	LR4-7.5C	В	180	75	205	105	85	90	7	M4	1	-	12
	LR4-15C	Α	195	75	215	131	110	120	7	M5	1	-	18
	LR4-22C	С	240	80	340	215	180	120	10	M6	-	-	33
	LR4-37C	С	285	95	405	240	205	130	12	M8	1	-	50
	LR4-55C	С	285	95	415	250	215	145	12	M10	1	-	58
	LR4-75C	С	330	110	440	255	220	150	12	M10	-	-	70
	LR4-110C	С	345	115	490	280	245	170	12	M12	-	-	100
	LR4-160C	С	380	125	550	300	260	185	15	M12	1	-	140
400V	LR4-220C	С	450	150	620	330	290	230	15	M12	-	-	200
series	LR4-280C	С	480	160	740	330	290	240	15	M16	-	-	250
	LR4-315C	С	480	160	760	340	300	250	15	M16	1	-	270
	LR4-355C	С	480	160	830	355	315	255	15	M16	-	-	310
	LR4-400C	С	480	160	890	380	330	260	19	M16	-	-	340
	LR4-500C	С	525	175	960	410	360	290	19	M16	-	-	420
	LR4-630C	D	600	200	640	440	390	285	19	-	75	17.5	450
	LR4-710C	Е	645	215	730	440	390	295	19	-	100	30	510
	LR4-800C	Е	690	230	850	450	400	290	19	-	100	30	600
	LR4-1000C	Е	770	255	940	550	480	340	23	-	100	30	950

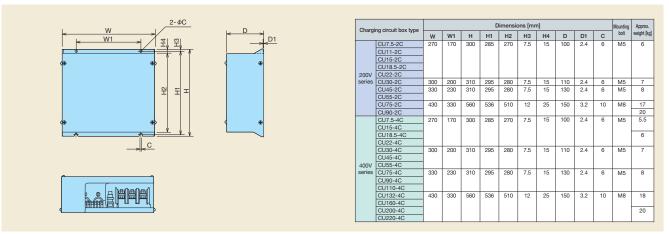
<Filtering reactor>



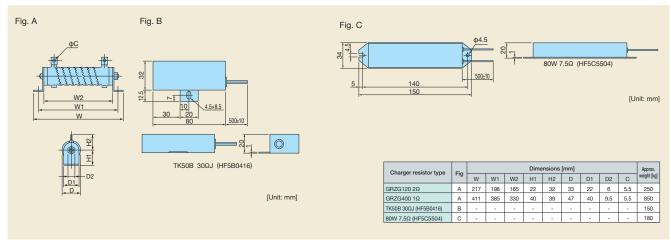
, , ,			
Fig. D MAX. W Sampside Fortenial Mo WAX. D2 AAAA WI AAAAA WI AAAAAA WI AAAAAAAAAA	Φ Φ Φ Φ Φ Φ	1 D2 N N N N N N N N N N N N N N N N N N	


	iltering	Fig				L	imensi	isions [mm]					Approx.
rea	actor type	Fig	W	W1	Н	D	D1	D2	К	М	N	N1	weight [kg]
	LFC2-7.5C	В	125	40	100	85	67	85	6	M5	-	-	2.2
	LFC2-15C	В	125	40	100	93	75	90	6	M8	-	-	2.5
0001	LFC2-22C	В	125	40	100	93	75	105	6	M8	-	-	3.0
200V series	LFC2-37C	В	150	60	115	103	85	125	6	M10	-	-	5.0
	LFC2-55C	В	175	60	145	110	90	140	6	M12	-	-	8.0
	LFC2-75C	В	195	80	200	120	100	150	7	M12	-	-	13
	LFC2-110C	С	255	85	230	118	95	165	7	M12	-	-	20
	LFC4-7.5C	Α	125	40	100	85	67	75	6	M4	-	-	2.2
	LFC4-15C	Α	125	40	100	93	75	90	6	M5	-	-	2.5
	LFC4-22C	Α	125	40	100	93	75	95	6	M6	-	-	3.0
	LFC4-37C	В	150	60	115	108	90	110	6	M8	-	-	5.0
	LFC4-55C	В	175	60	145	110	90	120	6	M10	-	-	8.0
	LFC4-75C	В	195	80	200	113	93	130	7	M10	-	-	12
	LFC4-110C	С	255	85	220	113	90	145	7	M12	-	-	19
	LFC4-160C	С	255	85	245	137	110	150	10	M12	-	-	22
400V	LFC4-220C	D	300	100	320	210	180	170	10	M12	-	-	35
series	LFC4-280C	D	330	110	320	230	195	195	12	M16	-	-	43
	LFC4-315C	D	315	105	365	230	195	200	12	M16	-	-	48
	LFC4-355C	D	315	105	395	235	200	210	12	M16	-	-	53
	LFC4-400C	D	345	115	420	235	200	235	12	M16	-	-	60
	LFC4-500C	D	345	115	480	240	205	240	12	M16	-	-	72
	LFC4-630C	Е	435	145	550	295	255	200	15	-	75	17.5	175
	LFC4-710C	Е	480	160	570	295	255	215	15	-	100	30	190
	LFC4-800C	Е	480	160	600	320	270	220	15	-	100	30	220
	LFC4-1000C	Е	480	160	700	320	270	240	15	-	100	30	240

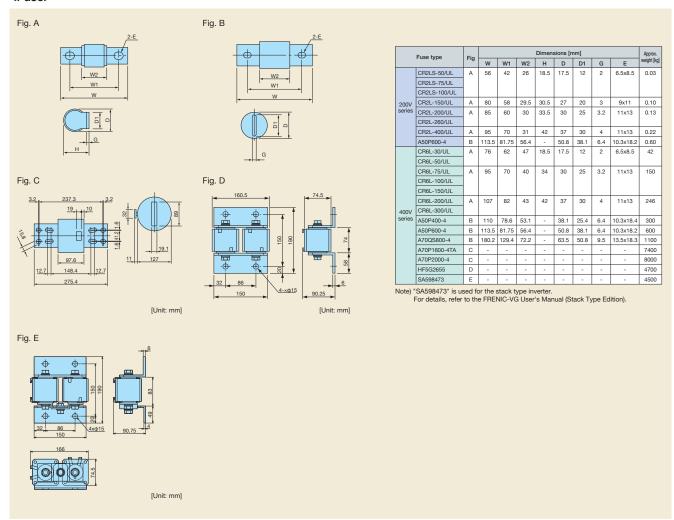
External Dimensions


<Filtering capacitor>

<Filtering resistor>



<Charging circuit box>



External Dimensions

<Charger resistor>

<Fuse>

Filter stack: RHF-D series (Stack Type)

- ■This is a dedicated filter stack for the high power factor PWM converter with power regenerative function (RHC-D Series).
- ■This device is used in combination with the RHC-D Series, and peripheral devices (filtering circuit, boosting circuit, charging circuit) required by the PWM converter have been combined into a single unit.
- ■Peripheral device wire reduction and attachment space saving is possible.
- A stack type with same shape as the inverter (stack type) and PWM converter (RHC-D) has been adopted. This has been effective in making panels more compact.

Standard specifications

3-phase 400V series

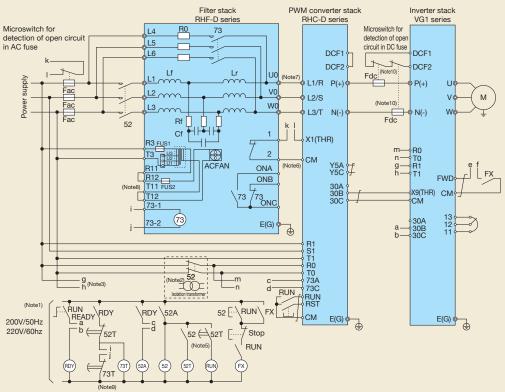
<u> </u>	143C +00 V 3CII										
	Туре		RHF160S-4D□	RHF220S-4D□	RHF280S-4D□	RHF355S-4D□					
		MD application	132	200	280	315					
Applic	able converter type	MD application	160	220	-	-					
RHF	□□S-4D□	I D anniheation	132	160	-	280					
		LD application	-	200	-	315					
Rated	current [A]		282	384	489	619					
Power	Main power Phase, Voltage, Frequency	y	3-Phase 380 to 440V/50Hz, 380 to 460V/60Hz								
supply voltage	Fan power supply	400V series	Single-phase 380 to 440V/50Hz, 380 to 460V/60Hz (*1)								
voitage	Phase, Voltage, Frequency	200V series	Single-phase 200 to 22	Single-phase 200 to 220V/50Hz, 200 to 230V/60Hz (*2)							
	Frequency variation		Voltage: +10 to -15%, Frequency: +5 to -5%, Unbalance ratio between voltage phases: within 2% (*3)								
Allowa	ble carrier frequency			2.5kHz	or 5kHz						
Approx	x. weight [kg]		155	195	230	250					
Enclos	sure		IP00 open type								
Noise	level		75dB (Condition: A range distance of 1 m) (*4)								

3-phase 690V series

	Туре		RHF160S-69D□	RHF220S-69D□	RHF280S-69D□	RHF355S-69D□	RHF450S-69D□			
		MD I' I'	132	200	250	315	400			
Applic	able converter type	MD application	160	_	280	355	450			
RHF]□□S-69D□	LD application	132	160	_	280	355			
			-	200	250	315	400			
Rated current [A]			163	223	283	359	455			
Power	Main power Phase, Voltage, Frequency	y	3-phase, 660 to 690V 50Hz/60Hz,575 to 600V 50Hz/60Hz							
supply	Fan power supply	690V series	Single-phase 660 to 690V 50Hz/60Hz, 575 to 600V 50Hz/60Hz (*1)							
voltage	Phase, Voltage, Frequency	200V series	Single-phase 200	Single-phase 200 to 220V/50Hz, 200 to 230V/60Hz (*2)						
	Frequency variation		Voltage: +10 to -15%, Frequency: ±5%, Unbalance ratio between voltage phases: within 2% (*3)							
Allowa	able carrier frequency				2.5kHz or 5kHz					
Appro	x. weight [kg]	180	215	230	255	280				
Enclos	sure		IP00 open type							
Noise	level		75dB(Condition: A range distance of 1 m) (*4)							

^{(*1) 400}V series: Filter stack internal terminal (U1, U2) switching is required if the power supply is 380 to 398 V, 50Hz or 380 to 430 V, 60Hz. 690V series: Filter stack internal terminal (U1, U2) switching is required if the power supply is 575 to 600 V, 50Hz/60Hz.

^(*2) Power can also be supplied from a 200 V power supply. For details, refer to the filter stack (RHF-D) Instruction Manual.


^(*3) Interphase unbalance rate (%) = $\frac{\text{Max. voltage [V] - min. voltage [V] x 67}}{3\text{-phase average voltage}}$

^(*4) This is the noise level at rated operation with a PWM converter and inverter of one-to-one capacity connected to the filter stack.

Terminal Functions

	Symbol	Name	Functions
	L1,L2,L3	Main power input	Connects a 3-phase power supply.
	U0,V0,W0	Filter output	Connect to PWM converter power input terminals L1/R, L2/S, and L3/T.
	L4,L5,L6	Charging circuit input	Connects a 3-phase power supply.
	E(G)	Grounding	Ground terminal for filter stack chassis (housing).
Main	R3,T3	Fan power supply input	To be used as supply input of AC cooling fan inside of filter stack.
circuit	R11.R12	Fan power supply input	Used when 200 VAC is input as the filter stack internal AC cooling fan power supply.
	T11,T12	(at input of 200 V)	When inputting 200 VAC, remove the shorting wires between terminals R11 and R12 and
	111,112	(at input of 200 v)	T11 and T12, and connect them to terminals R12 and T12.
	U1,U2	Power supply voltage	Change the terminal connection based on the fan power supply input terminal.
	01,02	switching terminal	For details, refer to the filter stack (RHF-D) Instruction Manual.
			Input control signal for contactor for charging circuit.
			<rated capacity="" coil="" of=""></rated>
			<400V series>
Input	73-1	Control input of contactor for	At power on 200 V/50 Hz: 120 VA, 220 V/60 Hz: 135 VA
signal	73-2	charging circuit	At power hold 200 V/50 Hz: 12.7 VA, 220 V/60 Hz: 12.4 VA
			<690V series>
			At power on 200V/50Hz: 120VA, 220V/60Hz: 135VA
			At power hold 200V/50Hz: 12.7V, 220V/60Hz: 12.4VA
	ONA	Operation signal of charging	Auxiliary contact of contactor for charging circuit
Output	ONB	circuit	To be used as signal for operational check of charging circuit.
Output signal	ONC	Circuit	Contact rating: 24 VDC 3 A * Min. working voltage/current: 5 VDC 3 mA
Signal	1	Overheating signal output	Signal is output when internal parts of filter stack are overheated.
	2	Overneating signal output	Contact rating: 24 VDC, 3 mA /max

Wiring Diagram

(Note 1) Connect a step-down transformer, and set the sequence circuit voltage as shown in the basic wiring diagram.

(Note 2) The auxiliary power supply input terminals (R0, T0) for the PWM converter and inverter must be connected to the main power supply via contact "b" on the charging circuit electromagnetic contactor (52) or via an isolation transformer. When using an ungrounded power supply, it is necessary to install an isolation transformer.

(Note 3) Since the AC fan power supply receives power from R1 and T1 terminals, the power supply must be connected without passing through the 73 or 52 contact "b".

(Note 3) The ST timer must be set to 1 sec.

(Note 5) The ST timer must be set to 1 sec.

(Note 6) Always set the PVM converter digital input terminal (X1) to external alarm (THR), and connect the filter stack overheating signal outputs (1, 2). To ensure input with contact "b", specify the contact "b" input setting for function code E14. Furthermore, connect all microswitches used for detecting AC fuse burnout and overheating signal outputs (1, 2) in series, and then connect them to the digital input terminal (X1).

(Note 7) Finsure to align the phase sequence when connecting the L1/R, L2/S, L3/T, R, Z, Z, R, I, S1, and T1 terminals.

(Note 8) When inputting 200 VAC for the fan power supply, remove the shorting wires between terminals R11 and R12 and T11 and T12, and connect them to terminals R12 and T12. These are dedicated terminals for internal fan power supply, and must not be used for other applications.

(Note 9) The 73T timer must be set to 5 sec.

(Note 10) If using a separate fan power supply, switch the tap inside the converter, and connect the fan power supply to the R3 and T3 terminals.

	Sylliuui	Fait lidille						
	Lr	Boosting reactor						
	Lf Filtering reactor							
Cf Filtering capacitor								
	Rf	Filtering resistor						
	R0 Charger resistor							
	Fac	AC fuse						
	Fdc	DC fuse						
	73	Magnetic contactor for charging circuit						
	Magnetic contactor for power supply							

Peripheral Devices

3-phase 400V series MD application

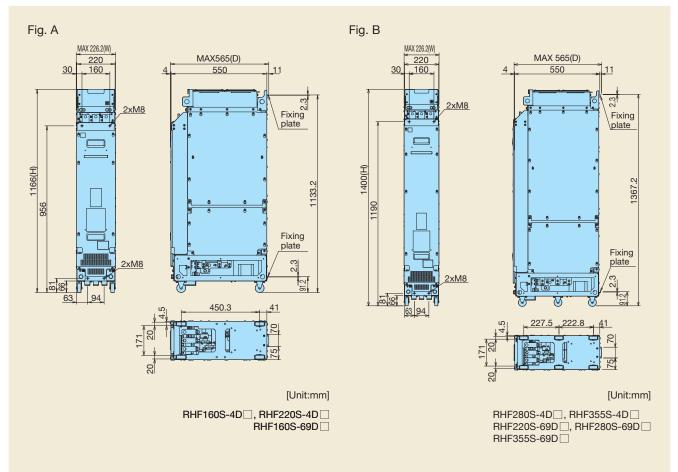
PWM converter	PWM converter Filter stack (RHF-D)		ELCB Electromagnetic contactor (52)		AC fuse (Fac)		Microswitch	
(RHC-D)	Туре	Rated current [A]	Type	Q'ty	Туре	Q'ty	Type	Q'ty
RHC132S-4D□	RHF160S-4D□	300	SC-N8	1	170M5446	3		
RHC160S-4D□	RHF160S-4D□	350	SC-N11	1	170M6546	3		
RHC200S-4D□	RHF220S-4D□	500	SC-N12	1	70M6547	3	170H3027	3
RHC220S-4D□	RHF220S-4D□	500	SC-N12	1	70M6547	3	170H3027	3
RHC280S-4D□	RHF280S-4D□	600	SC-N14	1	170M6499	3		
RHC315S-4D□	RHF355S-4D□	700	SC-N14	1	170M6500	3		

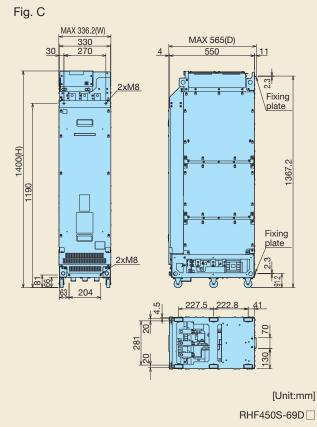
LD application

PWM converter	Filter stack (RHF-D)	MCCB, ELCB Electromagnetic contactor (52)		AC fuse (Fac)		Microswitch		
(RHC-D)	Type	Rated current [A]	Type	Q'ty	Туре	Q'ty	Type	Q'ty
RHC132S-4D□	RHF160S-4D□	350	SC-N11	1	170M5446	3		
RHC160S-4D□	RHF220S-4D□	500	SC-N12	1	170M6546	3		
RHC200S-4D□	RHF220S-4D□	500	SC-N12	1	70M6547	3	170H3027	3
RHC280S-4D□	RHF355S-4D□	700	SC-N14	1	170M6499	3		
RHC315S-4D□	RHF355S-4D□	800	SC-N14	1	170M6500	3		

 $^{^{\}star}$ AC fuses and microswitches are manufactured by Cooper Bussmann, but can also be ordered from Fuji.

3-phase 690V series MD application


PWM converter	Filter stack (RHF-D)	MCCB, ELCB Electromagnetic contactor (52)		AC fuse (Fac)		Microswitch		
(RHC-D)	Type	Rated current [A]	Type	Q'ty	Type	Q'ty	Type	Q'ty
RHC132S-69D□	RHF160S-69D□	175	SC-N6	1	170M5447	3		
RHC160S-69D□	RHF160S-69D□	200	SC-N7	1	1701015447	3		
RHC200S-69D□	RHF220S-69D□	250	SC-N8	1	170M5448	3		
RHC250S-69D□	RHF280S-69D□	300	SC-N8	1				
RHC280S-69D□	RHF280S-69D□	350	SC-N11	1	170M6548 3		170H3027	3
RHC315S-69D□	RHF355S-69D□	400	SC-N11	1				
RHC355S-69D□	RHF355S-69D□	500	SC-N12	1				
RHC400S-69D□	RHF450S-69D□	500	SC-N12	1	170M6500	3		
RHC450S-69D□	RHF450S-69D□	600	SC-N14	1				


LD application

PWM converter	PWM converter Filter stack (RHF-D)		MCCB, ELCB Electromagnetic contactor (52)		AC fuse (Fac)		Microswitch	
(RHC-D)	Type	Rated current [A]	Type	Q'ty	Type	Q'ty	Type	Q'ty
RHC132S-69D□	RHF160S-69D□	200	SC-N7	1	170M5447	3		
RHC160S-69D□	RHF220S-69D□	250	SC-N8	1	170003447 3			
RHC200S-69D□	RHF220S-69D□	300	SC-N8	1	170M5448	3	170H3027	3
RHC250S-69D□	RHF280S-69D□	350	SC-N11	1				
RHC280S-69D□	RHF355S-69D□	400	SC-N11	1	170M6548	3		
RHC315S-69D□	RHF355S-69D□	500	SC-N12	1				
RHC355S-69D□	RHF450S-69D□	500	SC-N12	1	1701/16500	70146500		
RHC400S-69D□	RHF450S-69D□	600	SC-N14	1	170M6500	3		

 $^{^{\}star}$ AC fuses and microswitches are manufactured by Cooper Bussmann, but can also be ordered from Fuji.

Dimensions

			External	External dimensions[mm]			
Series	Filter stack type	Fig	W	Н	D		
	RHF160S-4D	Α	226.2	1166	565		
400V	RHF220S-4D	Α	1				
Series	RHF280S-4D	В	226.2	1400	565		
	RHF355S-4D	В	1				
	RHF160S-69D	Α	226.2	1166	565		
	RHF220S-69D	В	226.2	1400	565		
690V Series	RHF280S-69D	В					
231100	RHF355S-69D	В					
	RHF450S-69D	С	336.2	1400	565		

Diode rectifier (RHD-D) (Stack Type)

Converter type

Diode rectifier converts AC power to DC power, then supplies DC power to inverter.

Substantial applicable capacity

A large capacity system may be constructed by connecting converters in parallel.

(3-parallel, 12-pulse rectifying system: using 6 units of diode rectifiers)

•MD specification: 1450kW (400V series), 2000kW (690V series)

•LD specification: 1640kW (400V series)

This unit is equipped with DC reactor for suppression of the harmonic currents. Further suppression of harmonic currents is made possible by creating a 12-pulse rectifier system in combination with power transformer, when connecting more than one unit in parallel.

Control device

A braking unit and braking resistor are available as options (externally attached).

Capacity can be selected based on the amount of regenerative (braking) energy, facilitating a compact system construction.

Standard Specifications: MD Specification for Medium Loads

Three-phase 400V series

	Model		RHD200S-4D□	RHD315S-4D□			
	Continuous rating [kW] (*2)		227	353			
Output	Nominal applied inverter /motor capacity (*2)		200	315			
,	Overload rating		150% of continuous rating for 1 minute				
	Voltage		DC 513 to 679V (variable with input power supply vo	Itage and load)			
Max. con	nnection capacity [kW] (*1)(*2)		600	945			
Min. con	nection capacity [kW] (*2)		110 180				
Required	power supply capacity [kVA]]	248 388				
la and a annual	Main power Phase, Voltage, Frequency		3-phase, 380 to 440V/50Hz, 380 to 480V 60Hz				
Input power supply	Auxiliary input for fan power	400V series	Single-phase, 380 to 440V/50Hz, 380 to 480V 60Hz	(*3)			
oupp.)	Phase, Voltage, Frequency 200V series		Single-phase, 200 to 220V/50Hz, 200 to 230V 60Hz	(*4)			
Voltage/frequency variation			Voltage: -15 to +10%, Frequency: +5 to -5%, Voltage unbalance: 2% or less (*5)				
Approxim	nate weight [kg]		125	160			
Enclosur	е		IP00 open type				

Three-phase 690V series

	Model		RHD220S-69D□	RHD450S-69D□			
	Continuous rating [kW] (*2)		252	504			
Output	Nominal applied inverter /motor capacity (*2)		220	450			
	Overload rating		150% of continuous rating for 1 minute				
Voltage			DC 776 to 1091V (variable with input power supply voltage and load)				
Max. con	nnection capacity [kW] (*1)(*2)		660	1350			
Min. con	nection capacity [kW] (*2)	2) 132 250					
Required	power supply capacity [kVA]		270	549			
lanut naucar	Main power Phase, Voltage, Frequency		3-phase, 575 to 690V/50Hz, 60Hz				
Input power supply	Auxiliary input for fan power	690V series	Single-phase, 660 to 690V, 50/60Hz, 575 to 600V, 50	/60Hz (*3)			
oapp.,	Phase, Voltage, Frequency	200V series	Single-phase, 200 to 220V/50Hz, 200 to 230V/60Hz	(*4)			
Voltage/frequency variation			Voltage: -15 to +10%, Frequency: +5 to -5%, Voltage unbalance: 2% or less (*5)				
Approxim	nate weight [kg]		125	160			
Enclosure	e		IP00 open type				

^{*1)} This is the total connectable inverter capacity due to initial charging circuit restrictions. However, the capacity that can be run simultaneously is the continuous capacity.

^{*2) 400}V series: This is the value when the power supply voltage is 400 V. If the power supply voltage is less than 400 V, it is necessary to reduce the capacity. A reduction in capacity is also required if connecting multiple inverters. 690V series: This is the value when the power supply voltage is 690 V. If the power supply voltage is less than 690 V, it is necessary to reduce the capacity. A reduction in capacity is also required if connecting multiple inverters.

^{*3) 400}V series: Diode rectifier internal terminal (U1, U2) switching is required if the power supply is 380 to 398 V, 50Hz or 380 to 430 V, 60Hz.

⁶⁹⁰V series: Diode rectifier internal terminal (U1, U2) switching is required if the power supply is 575 to 600 V, 50Hz/60Hz. *4) Power can also be supplied from a 200 V power supply. For details, refer to the diode rectifier (RHD-D) Instruction Manual

^{*5)} Interphase unbalance rate (%) = $\frac{\text{max. voltage [V]} - \text{min. voltage [V]}}{2 - \text{min. voltage [V]}} \times 67$

³⁻phase average voltage

Standard Specifications: LD Specification for Light Loads

Three-phase 400V series

	Model		RHD200S-4D□	RHD315S-4D□			
	Continuous rating [kW] (*2)		247	400			
Output	Output /motor capacity (*2)		220	355			
	Overload rating		110% of continuous rating for 1 minute				
	Voltage		DC 513 to 679V (variable with input power supply vo	Itage and load)			
Max. con	nection capacity [kW] (*1)(*2))	600	1065			
Min. conr	nection capacity [kW] (*2)		110	180			
Required	power supply capacity [kVA]]	271 435				
Input nower	Main power Phase, Voltage, Frequency	,	3-phase, 380 to 440V/50Hz, 380 to 480V 60Hz				
Input power supply	Auxiliary input for fan power	400V series	Single-phase, 380 to 440V/50Hz, 380 to 480V 60Hz	(*3)			
	Phase, Voltage, Frequency	200V series	Single-phase, 200 to 220V/50Hz, 200 to 230V 60Hz	(*4)			
	Voltage/frequency variation	ı	Voltage: -15 to +10%, Frequency: +5 to -5%, Voltage unbalance: 2% or less (*5)				
Approxim	nate weight [kg]		125 160				
Enclosure	е		IP00 open type				

Three-phase 690V series

	pridoc coct o					
	Model		RHD220S-69D \square			
	Continuous rating [kW] (*2)		280			
	Nominal applied inverter		050			
Output	/motor capacity (*2)		250			
	Overload rating		110% of continuous rating for 1 minute			
	Voltage		DC 776 to 976V (variable with input power supply voltage and load)			
Max. con	nnection capacity [kW] (*1)(*2))	750			
Min. con	nection capacity [kW] (*2)		132			
Required	power supply capacity [kVA]]	308			
	Main power		2 phase 575 to 2001/501 to 201 to			
Input power	Phase, Voltage, Frequency	690V	3-phase, 575 to 690V/50Hz, 60Hz			
supply	Auxiliary input for fan power	400V series	Single-phase, 660 to 690V, 50/60Hz, 575 to 600V, 50/60Hz (*3)			
117	Phase, Voltage, Frequency	200V series	Single-phase, 200 to 220V/50Hz, 200 to 230V/60Hz (*4)			
	Voltage/frequency variation	า	Voltage: -15 to +10%, Frequency: +5 to -5%, Voltage unbalance: 2% or less (*5)			
Approxim	nate weight [kg]		125			
Enclosure	е		IP00 open type			

^{*1)} This is the total connectable inverter capacity due to initial charging circuit restrictions. However, the capacity that can be run simultaneously is the continuous capacity.

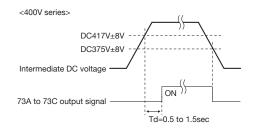
¹⁾ This is the Value when the power supply voltage is 400 V. If the power supply voltage is less than 400 V, it is necessary to reduce the capacity. A reduction in capacity is also required if connecting multiple inverters.

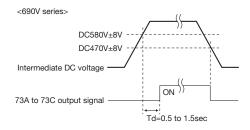
690V series: This is the value when the power supply voltage is 690 V. If the power supply voltage is less than 490 V, it is necessary to reduce the capacity. A reduction in capacity is also required if connecting multiple inverters.

*3) 400V series: Diode rectifier internal terminal (U1, U2) switching is required if the power supply is 380 to 398 V, 50Hz or 380 to 430 V, 60Hz.

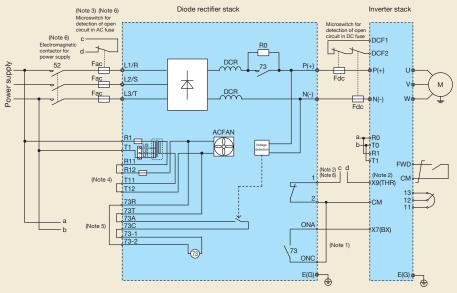
690V series: Diode rectifier internal terminal (U1, U2) switching is required if the power supply is 575 to 600 V, 50Hz/60Hz.

^{*4)} Power can also be supplied from a 200 V power supply. For details, refer to the diode rectifier (RHD-D) Instruction Manual.


^{*5)} Interphase unbalance rate (%) = $\frac{\text{max. voltage [V]} - \text{min. voltage [V]}}{3\text{-phase average voltage}} \times 67$


Terminal Functions

5	Symbol	Name	Functions			
	L1/R, L2/S, L3/T	Main supply input	Connect to 3-phase power supply.			
	P(+), N(-)	Converter output	Connect to inverter power input terminals P (+) and N (-).			
	E(G)	Ground terminal	Ground terminal of diode rectifier chassis (case)			
	R1, T1	Fan power supply input	To be used as supply input of AC cooling fan inside of diode rectifier.			
	D11 D10		Use if inputting 200 VAC for the diode rectifier internal AC cooling fan power supply.			
Main circuit	R11, R12 T11, T12	Fan power supply input (at input of 200 V)	When inputting 200 VAC, remove the shorting wires between terminals R11 and R12			
	111, 112		and T11 and T12, and connect them to terminals R12 and T12.			
	73R	Davier aventy for abording sirevit	Coil supply of charging circuit contactor for charging circuit.			
	73T	Power supply for charging circuit	Not to be used as power supply for external circuit.			
	114 110	Power supply voltage switching	Change the terminal connection based on the power supply connected to the fan power supply input terminal.			
	U1, U2	terminal	For details, refer to the diode rectifier (RHD-D) Instruction Manual.			
			Input control signal for charging circuit contactor.			
			Control signal may also be input externally.			
			Rated capacity of coil			
	70.1	Control in a state of a section for	<400V series>			
Input signal	73-1 73-2	Control input of contactor for	At power on 200V/50Hz: 390VA, 220V/60Hz: 460VA			
		charging circuit	At power hold 200V/50Hz: 28.6VA, 220V/60Hz: 28.8VA			
			<690V series>			
			At power on 470V/50Hz: 235VA, 220V/60Hz: 500VA			
			At power hold 40.0V/50Hz: 20.0VA, 220V/60Hz: 39.0VA			
	73A	0 1 1 1 1 1 1 1 1	Control signal of charging circuit			
		Output of control signal for	Can also be used for external sequence circuits.			
	73C	charging circuit	Contact rating : 250 VAC 0.5 A $\cos \phi = 0.3$, 30 VDC 0.5 A			
0.44	ONIA	On another since I of the arrive	Auxiliary contact of charging circuit contactor.			
Output signal	ONA ONC	Operation signal of charging	To be used as signal for operational check of charging circuit.			
	ONC	circuit	Contact rating: 24 VDC 3 A * Min. working voltage/current: 5 VDC 3 mA			
	1	Overheating signal output	Signal is output when internal parts of diode rectifier are overheated.			
	2	Overheating signal output	Contact rating: 24 VDC, 3 mA			


^(*1) Refer to the basic wiring diagram for the connection method.

Connect contactors after initial charging is complete. Furthermore, do not open contactors while the inverter is running. Failure to observe this may result in damage to the initial charging circuit.
(*2) An output signal timing chart and the intermediate DC voltage (diode rectifier output voltage) during signal output are shown below.

Wiring Diagram

Note 1) Construct a sequence so that the run command is input to the inverter after the initial charging of the diode rectifier has been completed.

Set any of the X1 to X9 inverter terminals to the coast-to-stop command (BX), and set contact "b" input with function code E14 to input with contact "b".

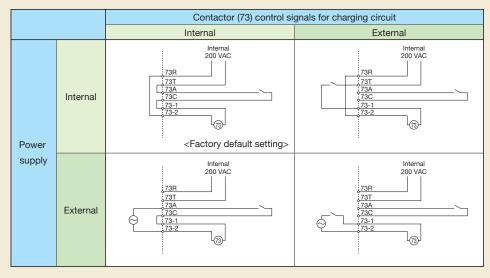
With this connection, the motor will coast to a stop if a momentary power failure occurs, and therefore the system should be equipped with an external interlock circuit for applications such

Note 2) Outputs a diode rectifier overheating signal. After setting any of the X1 to X9 inverter terminals to external alarm (THR), it is necessary to connect.

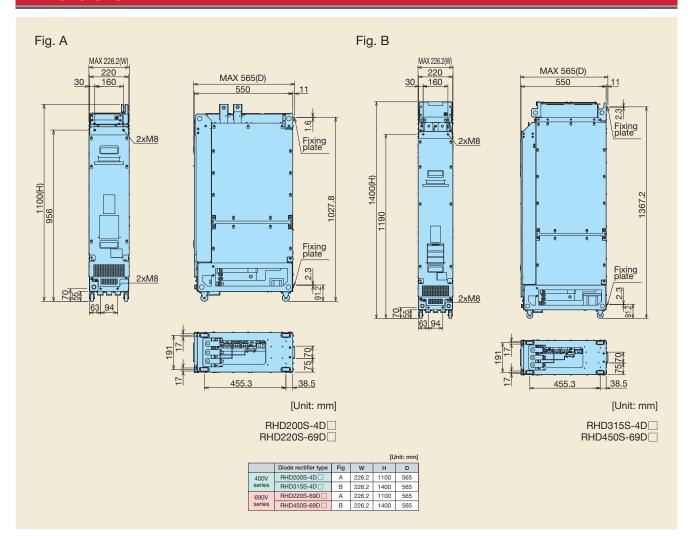
Set contact "b" input with function code E14 to input with contact "b".

Note 3) If using a microswitch to detect AC fuse burnout, set any of the X1 to X9 inverter terminals to external alarm (THR), and then connect all microswitches in series. Set contact "b" input with function code E14 to input with contact "b".

Note 4) If inputting 200 VAC for the fan power supply, remove the shorting wires between terminals R11 and R12 and T11 and T12, and connect them to terminals R12 and T12. Note 5) Control signals for the charging circuit contactor (73) and the drive power supply can be input externally.


Wire as shown below. Furthermore, 73A and 73C can also be used for external sequence circuits.

Note 6) If connecting multiple diode rectifiers, turn on the electromagnetic contactors (52) for the power supply simultaneously.


Furthermore, connect alarm relay outputs (1, 2), charging circuit actuating signals (ONA, ONB, ONC), and microswitch outputs for AC fuse burnout detection in series across each stack.

Note 7) If using the 400V series, connect Fdc (fuse) to the P(+) side. Fdc (fuse) is not required for the N(-) side.

If using the 690V series, connect Fdc (fuse) to the P(+) and N(-) sides. (Connect two microswitches in series.)

Dimensions

Peripheral Devices

Three-phase 400V series

RHD-D Type	Model	MCCB, ELCB	Electromagneti	c contactor (52)	AC Fus	e (Fac)	Microswitch	
пі ід-д Туре	Wiodei	Rated current [A]	Type	Q'ty	Type	Q'ty	Type	Q'ty
RHD200S-4D□	MD	500	SC-N12	1	170M6547	3	470110007	
KHD2005-4D	LD	500	5C-N12					
DUD0450 4D	MD	700	00 N44		170140500	0	170H3027	3
RHD315S-4D□	LD	800	SC-N14		170M6500	3		

Three-phase 690V series

RHD-D Type	Model MCCB, ELCB		Electromagneti	c contactor (52)	AC Fus	e (Fac)	Microswitch	
ппо-о туре	iviodei	Rated current [A]	Type	Q'ty	Type	Q'ty	Type	Q'ty
DI IDOGGO COD	MD	300	00 N44		170140407	0		
RHD220S-69D□	LD	350	SC-N11	1	170M6497	3	170H3027	3
RHD450S-69D□	RHD450S-69D□ MD		SC-N14	1	170M6501	3		

 $^{^{\}star}$ AC fuses and microswitches are manufactured by Cooper Bussmann, but can also be ordered from Fuji.

Guideline for Suppressing Harmonics

Application to "Guideline for Suppressing Harmonics by the Users Who Receive High Voltage or Special High Voltage'

These products fall under the scope of the "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage." When entering into a new contract with an electric power company, or updating your existing contract, you will be requested to submit an accounting statement form by the electric power company.

(1) Scope of regulation

In principle, the guideline applies to the customers that meet the following two conditions:

- · The customer receives high voltage or special high voltage.
- The "equivalent capacity" of the converter load exceeds the standard value for the receiving voltage (50kVA at a receiving voltage of 6.6kV).

(2) Regulation method

The level (calculated value) of the harmonic current that flows from the customer's receiving point out to the system is subjected to the regulation. The regulation value is proportional to the contract demand. The regulation values specified in the guideline are shown in Table 1.

Table 1 Upper limits of harmonic outflow current per kW of contract demand [mA/kW]

Receiving voltage	5th	7th	11th	13th	17th	19th	23th	Over 25th
6.6kV	3.5	2.5	1.6	1.3	1.0	0.90	0.76	0.70
22kV	1.8	1.3	0.82	0.69	0.53	0.47	0.39	0.36

1. Calculation of Equivalent Capacity (Pi)

Although the equivalent capacity (Pi) is calculated using the equation of (input rated capacity) x (conversion factor), catalog of conventional inverters do not contain input rated capacities. A description of the input rated capacity is shown below:

(1) "Inverter rated capacity" corresponding to "Pi"

 Calculate the input fundamental current I1 from the kW rating and efficiency of the load motor, as well as the efficiency of the inverter. Then, calculate the input rated capacity as shown below:

Input rated capacity = $\sqrt{3}$ x (power supply voltage) x I₁ x 1.0228/1000[kVA] Where 1.0228 is the 6-pulse converter's value obtained by (effective current) / (fundamental current).

 When a general-purpose motor or inverter motor is used, the appropriate value shown in Table 2 can be used. Select a value based on the kW rating of the motor used, irrespective of the inverter type.

Table 2 "Input rated capacities" of general-purpose inverters determined by the nominal applied motors

	Table 2 Imput rated capacities of general-purpose inverters determined by the norminal applied motor								IIIOLOIG				
	Nominal applie	d motor [kW]	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
ı	Pi	200V	0.57	0.97	1.95	2.81	4.61	6.77	9.07	13.1	17.6	21.8	25.9
Į	[kVA]	400V	0.57	0.97	1.95	2.81	4.61	6.77	9.07	13.1	17.6	21.8	25.9
	Nominal applie	d motor [kW]	30	37	45	55	75	90	110	132	160	200	220
ı	Pi	200V	34.7	42.8	52.1	63.7	87.2	104	127				
	[kVA]	400V	34.7	42.8	52.1	63.7	87.2	104	127	153	183	229	252
	Nominal applie	d motor [kW]	250	280	315	355	400	450	500	530	560	630	
	Pi	200V											
	[kVA]	400V	286	319	359	405	456	512	570	604	638	718	

(2) Values of "Ki (conversion factor)"

 Depending on whether an optional ACR (AC REACTOR) or DCR (DC REACTOR) is used, apply the appropriate conversion factor specified in the appendix to the guideline. The values of the converter factor are shown in Table 3.

Table 3 "Conversion factors Ki" for general-purpose inverters determined by reactors

Circuit category	Circuit Ty	/ре	Conversion factor Ki
		Without a reactor	K31=3.4
3	3-phase rectifier	With a reactor (ACR)	K32=1.8
3	(smoothing capacitor)	With a reactor (DCR)	K33=1.8
		With reactors (ACR and DCR)	K34=1.4
	Single-phase bridge	e-phase bridge Without a reactor	
4	(capacitor smoothing, voltage doubler rectification system)	With a reactor (ACR)	K42=0.35
4	Single-phase bridge	Without a reactor	K43=2.9
	(capacitor smoothing, full-wave rectification system)	With a reactor (ACR)	K44=1.3
5	Self-excited three-phase bridge	High-efficiency power supply regeneration When using PWM converter	K5=0

2. Calculation of Harmonic Current

Value of "input fundamental current"

- Apply the appropriate value shown in Table 4 based on the kW rating of the motor, irrespective of the inverter type or whether a reactor is used.
- If the input voltage is different, calculate the input fundamental current in inverse proportion to the voltage.

Table 4 "Input fundamental currents" of general-purpose inverters determined by the nominal applied motors, 3-phase rectifier (smoothing capacitor)

Nominal applied	motor [kW]	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
Input fundamental	200V	1.61	2.74	5.50	7.93	13.0	19.1	25.6	36.9	49.8	61.4	73.1
current [A]	400V	0.81	1.37	2.75	3.96	6.50	9.55	12.8	18.5	24.9	30.7	36.6
6.6 kV converted	value [mA]	49	83	167	240	394	579	776	1121	1509	1860	2220
Nominal applied	motor [kW]	30	37	45	55	75	90	110	132	160	200	220
Input	200V	98.0	121	147	180	245	293	357				
fundamental current [A]	400V	49.0	60.4	73.5	89.9	123	147	179	216	258	323	355
6.6 kV converted	value [mA]	2970	3660	4450	5450	7450	8910	10850	13090	15640	19580	21500
Nominal applied	motor [kW]	250	280	315	355	400	450	500	530	560	630	
Input fundamental	200V											
current [A]	400V	403	450	506	571	643	723	804	852	900	1013	
6.6 kV converted	l value [mA]	24400	27300	30700	34600	39000	43800	48700	51600	54500	61400	

(2) Calculation of harmonic current

Table 5 Generated harmonic current [%], 3-phase rectifier (smoothing capacitor)

Degree	5th	7th	11th	13th	17th	19th	23th	25th
Without a reactor	65	41	8.5	7.7	4.3	3.1	2.6	1.8
With a reactor (ACR)	38	14.5	7.4	3.4	3.2	1.9	1.7	1.3
With a reactor (DCR)	30	13	8.4	5.0	4.7	3.2	3.0	2.2
With reactors (ACR and DCR)	28	9.1	7.2	4.1	3.2	2.4	1.6	1.4

- ACR: 3%
- DCR: Accumulated energy equal to 0.08 to 0.15ms (100% load conversion)
- Smoothing capacitor: Accumulated energy equal to 15 to 30ms (100% load conversion)
- Load: 100%

■ nth harmonic current [A] = Fundamental current [A] ×

Generated nth harmonic current [%]

100

Calculate the harmonic current of each order (harmonic number) using the following equation:

(3) Maximum availability factor

- For a load like elevators, which provides intermittent operation, or a load with a over-dimensioned motor rating, reduce the current by multiplying the equation by the "maximum availability factor" of the load.
- The "maximum availability factor of an appliance" means the ratio of the capacity of the harmonic generator in operation at which the availability reaches the maximum, to its total capacity, and the capacity of the generator in operation is an average for 30 minutes.
- In general, the maximum availability factor is calculated according to this definition, but the standard values shown in Table 6 are recommended for inverters for building equipment.

Table 6 Maximum availability factor of inverters, etc. for building equipment (based on equipment type)

Equipment	Inverter capacity category	Single inverter availability factor			
Air conditioning system	200kW or less	0.55			
Air conditioning system	Over 200kW	0.60			
Sanitary pump		0.30			
Elevator		0.25			
Rising elevator		0.65			
Falling elevator		0.25			
Refrigerator, freezer	50kW or less	0.60			

[Correction coefficient according to contract demand level]

 Since the total availability factor decreases with increase in the building scale, calculating reduced harmonics with the correction coefficient β defined in Table 7 below is permitted.

Table 7 Correction coefficient according to the building scale

Contract demand [kW]	Correction coefficient (
300	1.00
500	0.90
1000	0.85
2000	0.80

"If the contract demand is between two specified values shown in Table 7, calculate the value by interpolation.

(4) Harmonic order to be calculated

Calculate only the "5th and 7th" harmonic currents

FRENIC-VG

МЕМО

When running general-purpose motors

• Driving a 400V general-purpose motor

When driving a 400V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation.

• Torque characteristics and temperature rise
When the inverter is used to run a general-purpose
motor, the temperature of the motor becomes
higher than when it is operated using a commercial
power supply. In the low-speed range, the cooling
effect will be weakened, so decrease the output
torque of the motor. If constant torque is required in
the low-speed range, use a Fuji inverter motor or a
motor equipped with an externally powered
ventilating fan.

Vibration

When the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine. Operation of a 2-pole motor at 60Hz or more may cause abnormal vibration.

- * Study use of tier coupling or dampening rubber.
- * It is also recommended to use the inverter jump frequencies control to avoid resonance points.

Noise

When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60Hz or more can also result in more noise.

When running special motors

· Explosion-proof motors

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

Brake motors

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.

Do not use inverters for driving motors equipped with series-connected brakes.

Geared motors

If the power transmission mechanism uses an oillubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

Single-phase motors

Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase motors.

Environmental conditions

Installation location

Use the inverter in a location with an ambient temperature range of -10 to 50°C.

The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

Combination with peripheral devices

Installing a molded case circuit breaker (MCCB)

Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.

Installing a magnetic contactor (MC) in the output (secondary) circuit

If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.

Installing a magnetic contactor (MC) in the input (primary) circuit

Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

Protecting the motor

The electronic thermal facility of the inverter can protect the general-purpose motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.

If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).

Discontinuance of power-factor correcting capacitor Do not mount power factor correcting capacitors in

the inverter (primary) circuit. Use a DC reactor to improve the inverter power factor. Do not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.

• Discontinuance of surge killer

Do not mount surge killers in the inverter output (secondary) circuit.

Reducing noise

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met.

· Measures against surge currents

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.

We recommend connecting a DC REACTOR to the inverter.

• Megger test

When checking the insulation resistance of the inverter, use a 500V megger and follow the instructions contained in the Instruction Manual.

Wiring

· Wiring distance of control circuit

When performing remote operation, use twisted shielded wire and limit the distance between the inverter and the control box to 20m.

Wiring length between inverter and motor

If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (high-frequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 50m. If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL). When wiring is longer than 50m, and sensorless vector control or vector control with speed sensor is selected, execute off-line tuning.

• Wiring size

Select cables with a sufficient capacity by referring to the current value or recommended wire size.

Wiring type

Do not use multicore cables that are normally used for connecting several inverters and motors.

Grounding

Securely ground the inverter using the grounding terminal.

Selecting inverter capacity

• Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.

· Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current.

Transportation and storage

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku,

Tokyo 141-0032, Japan

Phone: +81-3-5435-7057 Fax: +81-3-5435-7420

URL: http://www.fujielectric.com/